
A Nonlinear Presolve
Algorithm in AIMMS

By Marcel Hunting
marcel.hunting@aimms.com

November 2011

This paper describes the AIMMS presolve algorithm for nonlinear problems. This presolve algorithm uses
standard techniques like removing singleton rows, deleting fi xed variables and redundant constraints, and
tightening variable bounds by using linear constraints. Our algorithm also uses the expression tree of
nonlinear constraints to tighten variable bounds.

1 Introduction

The AIMMS modeling language [3] is linked to many fi rst class solvers for solving optimization problems. All
linear solvers in AIMMS (CPLEX, XA, XPRESS, MOSEK) use a presolve algorithm whereby the problem input
is examined for logical reduction opportunities. The goal is to reduce the size of the problem. A reduction in
problem size in general leads to a reduction in total run time (including the time spent in the presolve
algorithm itself).

Of all nonlinear solvers in AIMMS (CONOPT, KNITRO, MINOS, SNOPT, BARON, LGO, AOA) only CONOPT
and BARON use preprocessing techniques. When CONOPT [5] solves a model, it tries to detect recursive
or triangular equations that can be solved before the optimization is started. The equations identifi ed in
this way can be solved independent of the optimization, and they can therefore be removed from the
optimization process. In BARON [14] range reduction is part of the branch and reduce algorithm and used
at every node in the search tree.

Preprocessing for linear problems has been studied extensively; see e.g., [1,4,7,12]. Preprocessing for
quadratic problems is discussed in, e.g., [8,9]. In global optimization, preprocessing mainly focuses on bound
tightening techniques; see [2] and its references. Some of these techniques have been applied to the primal
presolve algorithm for nonlinear problems in the modeling language AMPL [6].

We have developed a nonlinear presolve algorithm in AIMMS with the goal to reduce the size of the problem
and to tighten the variable bounds, which may help the solver to solve the problem faster. Besides BARON,
all nonlinear solvers in AIMMS are local solvers, i.e. the solution found by the solver is a local solution and
cannot be guaranteed to be a global solution. The presolve algorithm may help the solver in fi nding
a better solution.

A local solver might sometimes fail to fi nd a solution and then it is often not clear whether that is caused by
the problem being infeasible or by the solver failing to fi nd a solution for a feasible problem. The presolve
algorithm may reveal inconsistent constraints and/or variable bounds and hence identify a problem as
infeasible.

www.aimms.com | support@aimms.com

2 Presolve Techniques

We consider the following constrained nonlinear optimization problem:
min f(x) (1)
s.t. g(x) ≤ d (2)
 Ax ≤ b (3)
 l ≤ x ≤ u (4)

where . The constraints (2) represent the
nonlinear constraints in the problem and the constraints (3) the linear constraints. The objective function
in (1) might be linear or nonlinear. In this paper we focus on problems that contain only continuous
variables, although our presolve algorithm can also be used for problems that have integer variables.

The nonlinear presolve algorithm will:

• Remove singleton rows by moving the bounds to the variables.

• Tighten bounds of (primal) variables using linear and nonlinear constraints.

• Delete fi xed variables.

• Remove one variable of a doubleton.

• Delete redundant constraints.

2.1 Singleton Rows
A singleton row is a linear constraint that contains only one variable. An equality singleton row fi xes the
variable to the right-hand-side value of the row, and unless this value confl icts with the current bounds of the
variable in which case the problem is infeasible, we can remove both the row and variable from the problem.
An inequality singleton row introduces a new bound on the variable which can be redundant, tighter than
an existing bound in which case we update the bound, or infeasible. Our presolve algorithm will remove all
singleton rows.

If a variable is fi xed then sometimes another row becomes a singleton row, and if that row is an equality row
we can fi x the remaining variable and remove it from the problem. By repeating this process we can solve
any triangular system of linear equations that is part of the problem.

2.2 Bounds Tightening Using Linear Constraints
In the following analysis we use a linear “less than or equal to” constraint. A similar analysis applies to
other constraint types. The technique described here is known in the global optimization literature as
feasibility-based bounds tightening.

Assume we have a linear constraint i that originally has the form

 (5)

www.aimms.com | support@aimms.com

If we assume that all variables in this constraint have fi nite bounds then we can determine the following lower
and upper limits on constraint i:

 (6)

and

 (7)

where defi ne the sets of variables with a positive and a negative
coeffi cient in constraint i respectively. By comparing the lower and upper limits of a constraint with the
right-hand-side value we obtain one of the following situations:

• Constraint (5) cannot be satisfi ed and is infeasible.

• Constraint (5) can only be satisfi ed if all variables in the constraint are fi xed on their lower bound

if they have a positive coeffi cient, or fi xed on their upper bound if they have a negative coeffi cient. The

constraint and all its variables can be removed from the problem.

• Constraint (5) is redundant, i.e. will always be satisfi ed, and can be removed from the problem.

• Constraint (5) cannot be eliminated but can often be used to improve the bounds of one or

more variables as we will see below.

If we face the last situation mentioned above, i.e. , then combining (5) with (6) gives the following
bounds on a variable k in constraint i:

 (8)

and
 (9)

If the upper bound given by (8) is smaller than the current lower bound of variable k then the problem is
infeasible. If it is smaller then the current upper bound of variable k, we can update the upper bound for
variable k. A similar procedure can be applied to the lower bound as given by (9).

Note that bounds (8) and (9) can only be derived if all bounds lj and uj in (6) are fi nite. But also if exactly one
of the bounds in (6) is an infi nite bound, we can still fi nd an implied bound for the corresponding variable.
Our algorithm also uses this technique but for the details we refer to [7].

2.3 Bounds Tightening Using Nonlinear Constraints
We can rewrite a nonlinear constraint i in (2) as

 (10)

separating the linear variables x in this constraint from the nonlinear variables y. As before, see (6) and (7),

we can fi nd lower and upper limits on the linear part of the constraint, and again we denote them by and

respectively. For this constraint we can derive the following upper bound on the nonlinear term in (10):

www.aimms.com | support@aimms.com

 hi (y) ≤ di
 _ (11)

Note that if there are no linear terms in constraint (10) then = 0.

Nonlinear expressions in AIMMS are stored in an expression tree. By going through the expression tree from
the top node to the leafs we can sometimes derive bounds on some of the variables in the expression. For
example, assume we have the constraint

 sqrt(ln(x)) ≤ 2

with x unbounded. Figure 1 shows that then the ln(x) sub-expression should be in the range [0,4] since sqrt(y)
is not defi ned for y (-∞,0), which implies that x should be in the range [1,e4].

If an expression is defi ned on a certain range only, then this range can sometimes we used to reduce a bound
of a variable. For example, the function sqrt(x-1) is only defi ned for x ≥ 1 and therefore the presolve algorithm
will derive 1 as a lower bound for x.

If we reverse the order of going through an expression tree, hence going up starting from the leaf nodes, we
can bound the expression. Consider for example the constraint

 y + sqrt(ln(x)) ≤ 10

and let x have a range of [e4,e16]. Then from Figure 2 it follows that the nonlinear expression has a range of
[2,4] which implies that y ≤ 8.

Figure 1. Bound reduction using expression sqrt(ln(x)).

www.aimms.com | support@aimms.com

If an expression only contains unary operators then we only have to go through the tree from top to bottom
once to get the bounds on the variables, and back once to get bounds on the expression. For expressions
that contain binary operators the bounding procedure is more complicated. For example, consider the
constraint

 ln(ex * y2) ≤ 4,

and let variable x have range [0,∞) and variable y be unbounded. To process the multiplication operator we
fi rst have to bound the ex * y2 sub-expression and the ex * y2 sub-expressions (Step 1 in Figure 3). Since
expression ex * y2 has range (0,e4] and expression ex has range [1,∞) we can conclude that expression y2 must
have a range of (0,e4] which implies that y is in the range [-e2,e2] (see Step 2 in Figure 3).

If a bound of one of the variables in the nonlinear part of a constraint changes we process that constraint
again immediately. We stop if no bound was changed signifi cantly. Like this we can solve the following
constraint in one iteration of the algorithm:

where x is unbounded (free). In the fi rst step the algorithm will determine that x ≥ 0 since is not defi ned

for x < 0. In the next step we get that and in the following step Then

we get and so on. Both the upper and lower bound of x will converge to 4 but we stop this

iterative process if the relative change of one of the bounds is smaller than an epsilon.

Figure 2. Bounding expression sqrt(ln(x)).

www.aimms.com | support@aimms.com

The presolve algorithm can handle expressions build up by the operators mentioned in Table 1. If a
nonlinear constraint contains an operator that is not in this table then it will be ignored by the presolve
algorithm. A constraint will also be ignored if it contains an external function.

2.4 Doubletons
If a problem contains a constraint of the form x = a * y, a ≠ 0, then the variables x and y defi ne a doubleton.
If the presolve algorithm detects a doubleton then it will replace the variable x by the term a * y in every
constraint in which x appears, and remove the variable x from the problem.

For some problems good initial values are given to the variables. In case the initial value given to x does not
match the initial value of y according to the relationship x = a * y, it is unclear which initial value we should
assign to y. Preliminary test results showed that in such a case it is better not to remove the doubleton, and
pass both variables to the solver with their own initial value. This has become the default behavior of our
presolve algorithm regarding doubletons.

Figure 3. Bound reduction using expression ln(ex * y2)

Table 1. Operators used by the presolve algorithm.

www.aimms.com | support@aimms.com

3 The Algorithm

Below we present our presolve algorithm in pseudo-code. We denote by C the set of all constraints in the
problem, and by V the set of variables that changed during the bound reduction step for some constraint
c C.

RemoveDoubletons

for (c C) do
 OutOfDate(c) := true;
endfor

Iter := 1;
SomeConstraintOutOfData := true;

while (Iter ≤ MaxIter and SomeConstraintOutOfData) do
SomeConstraintOutOfDate := false;

 for (c | OutOfDate(c)) do
 BoundChanged := DoBoundReduction(c, V);
 if (not IsLinear(c)) then
 /* Nonlinear constraint */
 NonlinearBoundChanged := true;
 while (NonlinearBoundChanged) do
 NonlinearBoundChanged := DoBoundReduction(c, V);
 endwhile
 endif

 OutOfDate(c) := false;

 if (BoundChanged) then
 SomeConstraintOutOfData := true;

 for (v V) do
 /* If the bound of some variable changed then mark all constraints
 that contain this variable as out of date */
 MarkConstraintsAsOutOfDate(v)
 endfor
 endif
 endfor
endwhile

RemoveDoubletons

DeleteFixedVariables

DeleteRedundantConstraints

www.aimms.com | support@aimms.com

Note that the algorithm removes doubletons before and after the loop for bound reductions.

In AIMMS there are several options that can be used to infl uence which presolve techniques will be used by the
algorithm. For instance a user can choose to only use linear constraints for reducing bounds, or to not remove
doubletons.

4 Possible Improvements

Our presolve algorithm currently only uses feasibility-based bounds tightening. Our presolve algorithm could
be extended with other bound tightening procedures. Optimality-based bounds tightening solves two linear
programming problems for each variable to tighten bounds [2,13]. Probing is a bound-tightening procedure
often applied to mixed integer linear programming [12]. It explores the consequences of restricting a variable
to a subinterval with the goal of tightening its bounds. Recently it has also been applied to mixed integer
nonlinear programming [2,10]. A drawback of both procedures is that they are more time consuming than the
feasibility-based bounds tightening procedure. We consider reduced-cost bound tightening [2,11] as less
attractive.

A variable bound tightened during the bound reduction step of a linear constraint is redundant. These
redundant bounds make the problem more degenerate and might result in some solvers taking more
iterations to solve the problem. To overcome this problem the presolve algorithm in AMPL [6] maintains two
sets of variable bounds, namely the strongest bounds the algorithm can deduce and bounds that the algorithm
does not know to be redundant with the constraints passed to the solver. In our algorithm we do not attempt
to avoid degeneracy; clearly here there is some room for improvement.

As a consequence of the presolve algorithm, dual information is lost. For the resolve algorithm in AMPL a
method is described in [6] to recover the values of the dual variables for the eliminated constraints. The AMPL
presolve algorithm, however, only uses linear constraints to reduce bounds and using nonlinear constraints
makes the recovering of dual information more complicated. Our current algorithm does not recover dual
information.

5 Infeasibility Analysis

In case the nonlinear presolve algorithm detects that a model is infeasible, it can (optionally) display an
infeasibility analysis. The information displayed is the constraint that appeared to be infeasible and all other
constraints that the nonlinear presolve algorithm used to reduce the bounds of the variables in this infeasible
constraint. Also the reductions on the variable bounds in these constraints are shown. For many models the
information displayed in the infeasibility analysis will help the modeler to quickly detect an error in the model.
But for some models the amount of information can be large and will not be useful.

www.aimms.com | support@aimms.com

Conclusions

A nonlinear presolve algorithm is a valuable add-on for any modeling system. It can help to reduce the size
of a model and to tighten the variable bounds, helping the nonlinear solver in fi nding a good solution.
Preliminary test results have shown that for many models the model was solved faster or a better solution was
found if the nonlinear presolve algorithm was used. On the other hand, for many models the solving time
increased although the amount of reductions done was large. We suspect that this is caused by the models
becoming more degenerated.

The nonlinear presolve algorithm offers a tool to quickly detect inconsistencies in an infeasible model. Also
this tool makes use of the expression trees of the nonlinear constraint to reduce variable bounds.

References

[1] Andersen, E.D., K.D. Andersen, Presolving in linear programming, Mathematical Programming 71(2), 1995, pp. 221-245.

[2] Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A., Branching and bounds tightening techniques for non-convex
MINLP, Optimization Methods and Software 24(4), 2009, pp. 597-634.

[3] Bisschop, J., M. Roelofs, AIMMS Language reference, Version 3.11, Paragon Decision Technology, Haarlem, 2011.

[4] Brearley, A.L., G. Mitra, H.P. Williams, Analysis of mathematical programming problems prior to applying the simplex
algorithm, Mathematical Programming 8, 1975, pp. 54-83.

[5] Drud, A.S., CONOPT, A system for large scale nonlinear optimization, Reference manual for version 3.14, ARKI
Consulting and Development A/S, 2004.

[6] Fourer, R., D.M. Gay, Experience with a primal presolve algorithm, in: Large Scale Optimization: State of the Art, W.W.
Hager, D.W. Hearn and P.M. Pardalos (eds.), Kluwer Academic Publishers, 1994, pp. 135-154.

[7] Gondzio, J., Presolve analysis of linear programs prior to applying the interior-point method, INFORMS Journal on
Computing 9, 1997, pp. 73-91.

[8] Gould, N.I.M., Ph.L. Toint, Preprocessing for quadratic programming, Mathematical Programming B 100(1), 2004,
pp. 95-132.

[9] Mészáros, C., U.H. Suhl, Advanced preprocessing techniques for linear and quadratic programming, OR Spectrum 25(4),
2003, pp. 575-595.

[10] Nannicini, G., Belotti, P., Lee, J., Linderoth, J., Margot, F., Waechter, A, A Probing Algorithm for MINLP with Failure
Prediction by SVM, in: CPAIOR 2011, LNCS Volume 6697, T. Achterberg and J.C. Beck (eds.), 2011, pp. 154-169. A nonlinear
presolve algorithm in AIMMS - 11 - Paragon Decision Technology, 2011

[11] Ryoo, H.S., N.V. Sahinidis, Global optimization of nonconvex NLPs and MINLPs with applications in process design,
Computers & Chemical Engineering, 19(5), 1995, pp. 551-566.

[12] Savelsbergh, M.W.P., Preprocessing and Probing Techniques for Mixed Integer Programming Problems, ORSA Journal
on Computing 6, 1994, pp. 445-454.

[13] Smith E. M., On the optimal design of continuous processes, PhD thesis, Imperial College of Science, Technology and
Medicine, University of London, 1996.

[14] Tawarmalani, M., N.V. Sahinidis, Global optimization of mixed-integer nonlinear programs: A theoretical and
computational study, Mathematical Programming 99(3), 2004, pp. 563-591.

www.aimms.com | support@aimms.com

