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Abstract
In this paper, we present a review of deterministic software for solving convex 
MINLP problems as well as a comprehensive comparison of a large selection of 
commonly available solvers. As a test set, we have used all MINLP instances classi-
fied as convex in the problem library MINLPLib, resulting in a test set of 335 con-
vex MINLP instances. A summary of the most common methods for solving convex 
MINLP problems is given to better highlight the differences between the solvers. 
To show how the solvers perform on problems with different properties, we have 
divided the test set into subsets based on the continuous relaxation gap, the degree 
of nonlinearity, and the relative number of discrete variables. The results also pro-
vide guidelines on how well suited a specific solver or method is for particular types 
of MINLP problems.

Keywords Convex MINLP · MINLP solver · Solver comparison · Numerical 
benchmark

1 Introduction

Mixed-integer nonlinear programming (MINLP) combines the modeling capa-
bilities of mixed-integer linear programming (MILP) and nonlinear program-
ming (NLP) into a versatile modeling framework. By using integer variables, it 
is possible to incorporate discrete decisions, e.g., to choose between some spe-
cific options, into the optimization model. Furthermore, by using both linear 
and nonlinear functions it is possible to accurately model a variety of different 
phenomena, such as chemical reactions, separations, and material flow through 
a production facility. The versatile modeling capabilities of MINLP means there 
are a wide variety of real-world optimization problems that can be modeled as 
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MINLP problems, e.g., block layout design problems (Castillo et al. 2005), can-
cer treatment planning (Cao and Lim 2011), design of water distribution net-
works (Bragalli et al. 2012), portfolio optimization (Bonami and Lejeune 2009), 
nuclear reactor core fuel reloading (Quist et al. 1999), process synthesis (Gross-
mann et al. 1999), pooling problems in the petrochemical industry (Misener and 
Floudas 2009), and production planning (Sahinidis and Grossmann 1991). More 
of MINLP applications are described by, e.g., Floudas (1995), Biegler and Gross-
mann (2004), Boukouvala et al. (2016) and Trespalacios and Grossmann (2014). 
For a recent review on MINLP methods see D’Ambrosio and Lodi (2013) and 
Bonami et al. (2012).

MINLP is often considered as a “difficult” class of optimization problems. How-
ever, there has been significant progress in the field during the last twenty years and 
there are several good solvers for MINLP problems available today (Bussieck and 
Vigerske 2010). Here we will focus on convex MINLP, which is a specific subclass 
with some desirable properties, e.g., it is possible to decompose a convex MINLP 
problem into a finite sequence of tractable subproblems. An MINLP problem is often 
considered as convex when its continuous relaxation yields a convex NLP problem. 
In recent years there has been significant progress within the field of MILP and NLP 
(Achterberg and Wunderling 2013; Bazaraa et al. 2013) which is also reflected onto 
the field of MINLP since decomposition techniques for MINLP problems often rely 
on solving these types of subproblems. It is also possible to solve certain classes of 
nonconvex MINLP problems, such as problems with signomial or general twice-dif-
ferentiable constraints, by reformulating them into convex MINLP problems (Pörn 
et al. 1999; Lundell et al. 2009; Lundell and Westerlund 2017; Nowak et al. 2018), 
further motivating the study of efficient methods for convex MINLP.

The intention of this paper is to give an overview of commonly available deter-
ministic solvers for convex MINLP problems and to present a thorough numerical 
comparison of the most common solvers. Most optimization solvers are connected 
to one or more of the well-established modeling environments for MINLP optimi-
zation, such as, AIMMS (Bisschop 2006), AMPL (Fourer et al. 1993), and GAMS 
(Brook et al. 1988). In recent years, there has also been a growing interest in opti-
mization modeling in Python and Julia (Bezanson et al. 2012); JuMP is a modeling 
environment for optimization embedded in Julia (Dunning et al. 2017), and Pyomo 
is a similar environment in Python (Hart et al. 2012). Several MINLP solvers also 
offer interfaces to MATLAB, and through OPTI Toolbox it is also possible to access 
several solvers in MATLAB (Currie et al. 2012).

The solvers considered in the numerical comparison are AlphaECP, Antigone, 
AOA, BARON, BONMIN, Couenne, DICOPT, Juniper, KNITRO, LINDO, Mino-
taur, Muriqui, Pavito, SBB, SCIP, and SHOT. These were chosen based on criteria 
like availability, active development, and support for a file format available in MIN-
LPLib (MINLPLib 2018). Some of these are global solvers and therefore not limited 
to convex problems. However, most of the global solvers have convexity identifica-
tion techniques or manual strategy settings that can be set by the user to allow them 
to more efficiently deal with convex problems. The convex solvers can also often 
be used as heuristic methods without guarantee for finding the optimal solution for 
nonconvex MINLP problems.
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In Sect. 2, the convex MINLP problem is defined and a general overview of the 
most common algorithms for such problems are given in Sect. 3. Most solvers in the 
comparison utilize one or more of these solution methods, as described in Sect. 4, 
which contains a summary of the solvers considered. Section 5 describes the bench-
mark in detail, and the numerical results are, finally, presented in Sect. 6.

2  Convex MINLP problem formulation

A convex MINLP problem can, without loss of generality, be written as

where the sets N, L and Y are given by

and L ∩ Y  is assumed to be a compact set. The upper and lower bounds on the inte-
ger variables yi are denoted as yi and y

i
 . To ensures convergence of methods such as 

outer approximation, it is assumed that all the integer variables are bounded either 
by the variables bounds or by the linear constraints, since unbounded variables can, 
e.g., cause some of the subproblems to be unbounded. Most solvers do not require 
the variables to be bounded, however, to avoid such issues some solvers automati-
cally assigns large bounds to unbounded variables. Generally, problem (P-MINLP) 
is considered as convex if all the nonlinear functions gj are convex in the variables � 
and the relaxed integer variables � . There has recently been an interest in nonsmooth 
convex MINLP, and some solution techniques have been presented see e.g., Eronen 
et  al. (2017) and Eronen et  al. (2014). However, most of the commonly available 
solvers only have guaranteed convergence for smooth problems and therefore we 
limit this study to problems where the nonlinear functions gj are continuously 
differentiable.

3  Methods

This section describes the most commonly used algorithms for convex MINLP. The 
methods described are branch and bound, extended cutting plane, extended support-
ing hyperplane, outer approximation, generalized Benders decomposition, and LP/
NLP-based branch and bound. This summary is not intended to give an in-depth 
analysis of the algorithms, but to better exemplify the differences between the solv-
ers. For a more detailed discussion about the algorithms see, e.g., D’Ambrosio and 
Lodi (2013), Belotti et al. (2013), Grossmann (2002), and Floudas (1995).

(P-MINLP)min
�,�∈N∩L∩Y

�T
1
� + �T

2
�,

(1)

N = {� ∈ ℝ
n, � ∈ ℝ

m | gj(�, �) ≤ 0 ∀j = 1,… l},

L = {� ∈ ℝ
n, � ∈ ℝ

m | �� + �� ≤ �},

Y = {� ∈ ℤ
m | y

i
≤ yi ≤ yi ∀ i = 1, 2,… ,m}.
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3.1  Branch and bound

Branch and bound (BB) was first presented as a technique for solving MILP prob-
lems by Land and Doig (1960). A few years later it was noted by Dakin (1965) 
that MINLP problems can be solved with a similar branch and bound approach, 
although the paper focused on linear problems. Solving convex MINLP problems 
with a BB approach was also studied by Gupta and Ravindran (1985).

In the basic form, BB solves the MINLP problem by relaxing the integer 
restrictions of the original problem and solving continuous (convex) NLP relaxa-
tions. Solving a continuous relaxation of problem (P-MINLP) results in a solu-
tion (�k, �k) , which provides a valid lower bound. If all components of �k take on 
integer values, then it is also an optimal solution to the MINLP problem. Oth-
erwise, the continuous relaxation is divided (branched) into two new NLP sub-
problems by adding the constraints yi ≤ ⌊yk

i
⌋ and yi ≥ ⌈yk

i
⌉ to the relaxed prob-

lem. The branching variable yi is a variable that takes on a fractional value and 
usually chosen based on some criteria, e.g., the variable furthest away from an 
integer value. A new lower bound can be obtained by solving the new subprob-
lems (child nodes), and in case one of the subproblems returns an integer solution 
it also provides a valid upper bound. The search procedure is often represented 
by a tree, where the nodes are connected to their parent node and represent the 
subproblems. If one of the nodes does not provide an integer solution, then it is 
branched into two new nodes creating two new subproblems. In case one of the 
nodes obtains an optimum worse than the upper bound or in case the subproblem 
is infeasible, then the node can be pruned since an optimal solution cannot exist 
in that part of the search space. This approach of solving convex NLP problems 
in each node is often referred to as NLP-based branch and bound (NLP-BB).

Obtaining a tight continuous relaxation is of great importance within BB to 
avoid large search trees. Stubbs and Mehrotra (1999) presented a branch and cut 
method for convex MINLP problems that uses cutting planes to strengthen the 
continuous relaxation. Several techniques have been proposed for obtaining cuts 
to strengthen the continuous relaxation for MINLP problems, e.g., lift-and-pro-
ject cuts (Kılınç et al. 2017; Zhu and Kuno 2006; Balas et al. 1993), Gomory cuts 
(Çezik and Iyengar 2005; Gomory et  al. 1958), and perspective cuts (Frangioni 
and Gentile 2006).

Compared to BB techniques for MILP problems, NLP-BB involves computa-
tionally more demanding subproblems; it is often not unusual to explore more 
than 100,000 nodes for a modest-sized problem! Techniques to efficiently inte-
grate the NLP solver and not solving all subproblems to optimality have also 
been proposed by Borchers and Mitchell (1994) and Leyffer (2001). Another 
BB approach is to solve LP relaxations in the nodes and construct a polyhedral 
approximation of the nonlinear constraints. A polyhedral branch and cut tech-
nique, solving LP relaxations in the nodes, was presented by Tawarmalani and 
Sahinidis (2005).

Many important details on BB such as branching strategies have been left out for 
the sake of brevity. For more details on BB see, e.g., Bonami et al. (2011) and Flou-
das (2000).
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3.2  Extended cutting plane

The extended cutting plane (ECP) algorithm was first presented by Westerlund and 
Petterson (1995), and can be seen as an extension of Kelley’s cutting plane method 
for convex NLP problems presented by Kelley (1960). In its original form the ECP 
method is intended for convex MINLP problems, and by some modifications, given 
the name generalized alpha ECP (GAECP), it can be applied to pseudoconvex prob-
lems as shown by Westerlund and Pörn (2002).

The ECP algorithm uses linearization of the nonlinear constraints to construct 
an iteratively improving polyhedral outer approximation of the set N. The trial solu-
tions are obtained by solving the following MILP subproblems,

where the set N̂k is given by

Here Ai is an index set containing the indices of either the most violated or all vio-
lated constraints in iteration i. Set N̂k is, thus, a polyhedral approximation of set N, 
constructed by first-order Taylor series expansions of the nonlinear constraints gen-
erated at the trial solutions (�k, �k) . The linearizations defining N̂k is usually referred 
to as cutting planes since they cut off parts of the search space that cannot contain 
the optimal solution. Due to convexity, N ⊆ N̂k and therefore, the solution of prob-
lem (MILP-k) provides a valid lower bound of problem (P-MINLP).

In the first iteration, the set N̂0 can simply be defined as ℝn+m . New trial solutions 
are then obtained by solving subproblem (MILP-k), and the procedure is repeated 
until a trial solution satisfies all the constraints within a given tolerance. Once a trial 
solution satisfies all nonlinear constraints it is also the optimal solution, since the 
solution was obtained by minimizing the objective within a set containing the entire 
feasible region. For more details on the ECP algorithm see, e.g., Westerlund and 
Petterson (1995) or Westerlund and Pörn (2002).

3.3  Extended supporting hyperplane

The extended supporting hyperplane (ESH) algorithm was presented by Kronqvist 
et al. (2016) as an algorithm for solving convex MINLP problems. The ESH algo-
rithm uses the same technique as the ECP algorithm for obtaining trial solutions, 
but uses a different technique for generating the polyhedral outer approximation N̂k . 
It has been observed that the cutting planes used to construct the polyhedral outer 
approximation in the ECP algorithm are, in general, not as tight as possible, see 
Kronqvist et al. (2016). By using a one dimensional root search, the ESH algorithm 
is able to obtain supporting hyperplanes to the set N at each iteration, and use these 
to construct a polyhedral outer approximation N̂k.

(MILP-k)(�k+1, �k+1) ∈ argmin
�,�∈N̂k∩L∩Y

�T
1
� + �T

2
�,

(2)N̂k =

{
gj(�

i, �i) + ∇gj(�
i, �i)T

[
� − �i

� − �i

]
≤ 0 ∀i = 1, 2… k, j ∈ Ai

}
.
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First, a strict interior point 
(
�int, �int

)
 is obtained by solving the following convex 

NLP problem

The interior point should preferably be as deep as possible within the interior of N, 
which is here approximated by minimizing the l∞-norm of the nonlinear constraints.

Similar to the ECP algorithm, the trial solutions 
(
�k
MILP

, �k
MILP

)
 are obtained by 

solving problem (MILP-k). These solutions provide a valid lower bound on the opti-
mal solution of problem (P-MINLP). However, they will not be directly used to con-
struct the set N̂k as in the ECP method.

To construct the polyhedral outer approximation, we define a new function F as 
the point-wise maximum of the nonlinear constraints, according to

A new sequence of points 
(
�k, �k

)
 is now defined as

where the interpolation parameters �k are chosen such that F(�k, �k) = 0 . The inter-
polation parameters �k can be obtained by a simple one-dimensional root search. 
The points 

(
�k, �k

)
 are now located on the boundary of the feasible region, and lin-

earizing the active nonlinear constraints at this point results in supporting hyper-
planes to the set N. The set N̂k is, thus, constructed according to Eq. (2) using the 
points 

(
�k, �k

)
.

The ESH algorithm also uses a preprocessing step to obtain supporting hyper-
planes of the set N by solving linear programming (LP) relaxations. The procedure of 
solving MILP subproblems and generating supporting hyperplanes is repeated until a 
trial solution satisfies all nonlinear constraints. The tighter polyhedral outer approxi-
mation usually gives the ESH algorithm an advantage over the ECP algorithm. It has 
been shown in Eronen et al. (2017), that the ESH algorithm can also be successfully 
applied to nonsmooth MINLP problems with pseudoconvex constraint functions.

3.4  Outer approximation

The outer approximation (OA) method was first presented by Duran and Gross-
mann (1986), with additional properties for convex MINLP problems described in 
Fletcher and Leyffer (1994). Some modifications of the OA method have been pre-
sented to handle nonconvex problems more efficiently, see, e.g., Kocis and Gross-
mann (1988) and Viswanathan and Grossmann (1990). For more details on the basic 
convex approach discussed in this paper see, e.g., Grossmann (2002).

(3)
min

(�,�)∈L,�∈ℝ
�

s.t. gj(�, �) ≤ � ∀j = 1, 2,… , l.

(4)F(�, �) = max
j

{
gj(�, �)

}
.

(5)
�k = �k�int + (1 − �k)�k

MILP
,

�k = �k�int + (1 − �k)�k
MILP

,
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OA is a decomposition technique, which obtains the optimal solution of the original 
problem by solving a sequence of MILP and NLP subproblems. Similar to both ECP 
and ESH, OA also constructs an iteratively improving polyhedral outer approxima-
tion N̂k of the nonlinear feasible region defined by the set N. However, OA only uses 
the polyhedral approximation for choosing the integer combination �k , while the cor-
responding continuous variables �k are chosen by solving a convex NLP subproblem.

In each iteration, the polyhedral outer approximation is used to construct problem 
(MILP-k), referred to as the MILP master problem. A new integer combination �k 
is then obtained by solving problem (MILP-k). Once the integer combination �k is 
obtained, the following NLP subproblem is formed

If problem (NLP-fixed) is feasible, a valid upper bound can be obtained from the 
solution (�k, �k) , and the solution is used to improve the polyhedral approximation 
according to Eq. (2). The polyhedral outer approximation is updated by either lin-
earizing all constraints or only the active constraints.

Problem (NLP-fixed) may also be infeasible in some iteration. If �k is an infeasi-
ble integer combination, the corresponding continuous variables can be obtained by 
solving the following convex subproblem

which minimizes the constraint violation with respect to the l∞-norm. The solution 
to problem (NLP-feasibility) does not provide a lower bound. However, using the 
infeasible solution (�k, �k) to update the polyhedral outer approximation according to 
Eq. (2), ensures that the infeasible integer combination �k cannot be obtained again 
by the MILP master problem, cf. Fletcher and Leyffer (1994).

The OA algorithm is usually initiated by solving a continuous relaxation of the 
MINLP problem, giving an initial lower bound and a solution that can be used to 
construct the polyhedral approximation N̂0 (Viswanathan and Grossmann 1990). It 
is also possible to use integer cuts to exclude specific integer combinations, as sug-
gested by Duran and Grossmann (1986). Solving the MILP master problems (MILP-
k) provides a lower bound on the optimum, and the procedure is repeated until the 
upper and lower bound is within a given tolerance.

In general, OA results in tighter polyhedral outer approximations than the ECP algo-
rithm, and may, therefore, require fewer iterations. For a feasible integer combination, 
OA will in general result in a tighter polyhedral outer approximation than ESH, but for 
an infeasible integer combination, ESH can give a tighter approximation. OA may thus 
require fewer iterations than both ESH and ECP to solve certain problems. However, 
since each iteration is somewhat more computationally demanding, the methods are 
difficult to compare directly.

(NLP-fixed)
(�k, �k) ∈ argmin

(�,�)∈N∩L

�T
1
� + �T

2
�

s.t. � = �k.

(NLP-feasibility)

(�k, �k, rk) ∈ argmin
(�,�)∈L,r∈ℝ

r

s.t. � = �k,

gj(�, �) ≤ r ∀j = 1, 2,… , l,
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3.5  Generalized Benders decomposition

Generalized Benders decomposition (GBD) was first presented by Geoffrion (1972) 
and is a generalization of Benders decomposition, a partitioning procedure for solving 
MILP problems (Benders 1962). As noted by Quesada and Grossmann (1992), GBD is 
closely related to OA and the main difference is the derivation of the master problem. 
In GBD, the master problem is projected onto the space defined by the integer vari-
ables and the master problem is, thus, only expressed in the integer variables. Here we 
will not present the full derivation of GBD, but use the same approach as Grossmann 
(2002) to derive the master problem. For more details on GBD see, e.g., Grossmann 
and Kravanja (1997) or Floudas (1995).

Given an integer combination �k , the corresponding continuous variables can be 
obtained by solving either one of the problems (NLP-fixed) or (NLP-feasibility). If 
problem (NLP-fixed) is feasible, it provides a valid upper bound, as well as values for 
the continuous variables �k and the optimal Lagrangean multipliers �k and �k . A valid 
cut is then given by

where ∇� denotes the gradient with respect to the integer variables. Here, � is a new 
auxiliary variable used for describing the objective function of the MILP subprob-
lems. Note that the left-hand side of Eq. (6) is a first order Taylor series expansion 
of the Lagrangean function of problem (NLP-fixed) at the point (�k, �k, �k,�k) with 
respect to the � and � variables, and that the gradient with respect to the � variables 
will be zero. The cut in Eq. (6) can be shown to be a surrogate constraint of the lin-
earization in Eq. (2) in which the continuous variables � are projected out, cf. Que-
sada and Grossmann (1992) or Grossmann (2002).

If problem (NLP-fixed) is infeasible with the integer combination �k , problem (NLP-
feasibility) is solved to obtain the continuous variables �k as well as the optimal multi-
pliers �k and �k . A valid cut in the integer space is then given by,

For more details on the cuts see, e.g., Quesada and Grossmann (1992). The master 
problem for obtaining new integer combinations, is then given by,

(6)�T
1
�k + �T

2
� +

l∑

j=1

�k
j
∇�gj(�

k, �k)T (� − �k) + (�k)T�� ≤ �,

(7)
l∑

j=1

�k
j

(
gj(�

k, �k) + ∇�gj(�
k, �k)T (� − �k)

)
+ (�k)T�� ≤ 0.

min
�∈Y ,�∈ℝ

�

s.t. �T
1
�k + �T

2
� +

∑l

j=1
�k
j
∇�gj(�

k, �k)T (� − �k) + (�k)T�� ≤ � ∀k ∈ Kf ,∑l

j=1
�k
j

�
gj(�

k, �k) + ∇�gj(�
k, �k)T (� − �k)

�
,

+ (�k)T�� ≤ 0 ∀k ∈ K�Kf ,
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where Kf  contains the indices of all iterations where problem (NLP-fixed) is feasi-
ble and the index set K contains all iterations. Solving the master problem provides 
a lower bound on the optimal solution and gives a new integer combination �k+1 . 
The procedure is repeated until the upper and lower bounds are within the desired 
tolerance.

Since the cuts obtained by equations (6) and (7) can be viewed as surrogate cuts 
of the linear constraints included in the OA master problem, GBD generates weaker 
cuts than OA at each iteration and usually requires more iterations to solve a given 
problem. However, the master problems in GBD may be easier to solve since they 
contain fewer variables compared to OA and only one cut is added in each iteration.

A compromise between OA and GBD has been proposed by Quesada and Gross-
mann (1992), where the continuous variables are classified into linear or nonlinear 
based on how they are involved in the original MINLP problem. By projecting out 
the nonlinear continuous variables, one can derive a Lagrangean cut in a similary 
way as with GBD while still retaining the linear constraints involving continuous 
variables in the master problem. The given method has been coined as partial sur-
rogate cuts (PSC), and as proved in Quesada and Grossmann (1992), it results in 
a tighter linear relaxation compared to GBD while still only adding one cut per 
iteration.

3.6  LP/NLP‑based branch and bound

When solving a convex MINLP problem with either ECP, ESH, GBD or OA, most 
of the total solution time is usually spent on solving the MILP subproblems. The 
MILP problems are also quite similar in consecutive iterations since they only differ 
by a few linear constraints. To avoid constructing many similar MILP branch and 
bound trees, Quesada and Grossmann (1992) presented a method which integrates 
OA within BB, called LP/NLP-based branch and bound (LP/NLP-BB). The main 
idea is to only construct one branch and bound tree, where the MILP master prob-
lem is dynamically updated.

An initial polyhedral outer approximation is constructed by solving a continu-
ous relaxation and linearizing the constraints at the relaxed solution, as in OA. The 
polyhedral outer approximation is used to construct the first MILP master problem 
and the branch and bound procedure, where an LP relaxation is solved in each node, 
is initiated. Once an integer solution is obtained at a given node, the integer com-
bination is used as in OA. If the NLP problem (NLP-fixed) with the given integer 
combination is feasible, it provides an upper bound and new linearizations are gen-
erated. If it is infeasible, new linearizations can be obtained by solving the feasibility 
problem (NLP-feasibility). The new linearizations are then added to all open nodes, 
and the LP relaxation is resolved for the node which returned the integer combi-
nation. The branch and bound procedure continues normally by solving LP relaxa-
tions, which now give a more accurate approximation of the nonlinear constraints. 
Here, the search must continue down each node until either the LP relaxation returns 
an integer solution that satisfies all nonlinear constraints, the LP relaxation obtains 
an objective value worse than the upper bound, or until the LP relaxation becomes 
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infeasible. As in normal BB, a lower bound is provided by the lowest optimal solu-
tion of the LP relaxations in all open nodes, and the search continues until the upper 
and lower bounds are within a given tolerance. The LP/NLP-BB procedure, thus, 
only generates a single branch and bound tree, and is sometimes referred to as a 
single-tree OA.

Numerical results have shown that LP/NLP-BB technique can result in signifi-
cantly fewer nodes than the total number of nodes explored in the multiple MILP 
master problems in OA (Duran and Grossmann 1986; Leyffer 1993). Implementa-
tions of the LP/NLP-BB algorithm have shown promising results, cf. Abhishek et al. 
(2010), Bonami et al. (2008) or Mahajan et al. (2017).

3.7  Solver enhancement techniques

Most solvers are not based on a single algorithm but combines several techniques 
to improve its performance. In this section, we briefly describe some preprocessing 
techniques and primal heuristics that can be integrated with all the previously men-
tioned methods to improve the practical performance. Other important techniques to 
improve the performance include various cutting planes as well as different branch-
ing rules. For more details on cutting planes for convex MINLP see, e.g., Belotti 
et al. (2013), Bonami (2011) and (Kılınç et al. 2017). Overviews of branching rules 
are given by Linderoth and Savelsbergh (1999) and Achterberg et al. (2005).

3.7.1  Preprocessing

Preprocessing includes various techniques for modifying the problem into a form 
more favorable for the actual solver. The preprocessing procedures can result in 
tighter relaxations or reduce the problem size. Belotti et al. (2013) classified MINLP 
presolving techniques into two major categories: housekeeping and reformulations. 
Housekeeping includes techniques such as bound tightening and removal of redun-
dant constraints, while reformulations can include techniques such as improvement 
of coefficients in the constraints and disaggregation of constraints.

There are two main approaches for tightening the variable bounds, feasibility-
based bound tightening (Shectman and Sahinidis 1998; Belotti et  al. 2010), and 
optimization-based bound tightening (Liberti and Maculan 2006). Feasibility-based 
bound tightening analyzes the constraints sequentially to improve the variable 
bounds, whereas optimization-based bound tightening solves a sequence of relaxed 
problems where each individual variable is maximized and minimized to obtain 
optimal bounds.

By reformulating the original problem, it is in some cases possible to obtain 
significantly tighter relaxations. Within MILP it is well known that different prob-
lem formulations can result in a tighter or weaker continuous relaxations; the 
uncapacitated facility location problem is a good example of when disaggregation 
of some constraints leads to a tighter continuous relaxation (Wolsey 1998). Simi-
lar techniques can also be used to obtain tighter relaxations for MINLP problems. 
Some types of nonlinear constraints can also be disaggregated to obtain a lifted 
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reformulation of the problem, where the nonlinear constraint is split into several 
constraints by the introduction of new variables. Such lifted reformulations were 
proposed by Tawarmalani and Sahinidis (2005), where it was shown that a lifted 
reformulation results in tighter polyhedral outer approximations. In a recent paper 
by Kronqvist et al. (2018b), it was shown that the performance of several MINLP 
solvers, based on ECP, ESH, and OA, could be drastically improved by utilizing a 
reformulation technique based on lifting. Lifted reformulations of MINLP problems 
have also been studied by Hijazi et al. (2013), and Lubin et al. (2016). Some further 
reformulation techniques for MINLP problems are also presented in Liberti (2009).

3.7.2  Primal heuristics

Primal heuristics is a common term for algorithms and techniques intended to obtain 
good feasible solutions with relatively little computational effort compared to solv-
ing the original problem. The use of primal heuristics began in the field of MILP, 
and for instance Fischetti and Lodi (2011) claimed that primal heuristics were one of 
the most important improvements in MILP solvers within the last decade. In recent 
years, there has also been an interest in primal heuristics for MINLP problems 
and several algorithms have been proposed for this task. Such algorithms are, e.g., 
undercover (Berthold and Gleixner 2014), feasibility pumps (Bonami et al. 2009), 
rounding heuristics (Berthold 2014b), and the center-cut algorithm (Kronqvist et al. 
2018a). Another technique for obtaining feasible solutions in solvers based on ECP, 
ESH or OA, is to check the alternative solutions in the solution pool provided by 
the MILP solver (Kronqvist et al. 2016). A detailed summary of several primal heu-
ristics for MINLP problems is given by Berthold (2014a) and D’Ambrosio et  al. 
(2012).

Finding a good feasible solution to an MINLP problem can improve the perfor-
mance of MINLP solvers, as shown by the numerical results in Berthold (2014a) 
and Bernal et al. (2017). Having a good feasible solution can, e.g., reduce the size 
of the search tree in BB-based solvers and provide a tight upper bound. Obtaining a 
tight upper bound is especially important in solvers based on the ECP or ESH algo-
rithm, because neither of the algorithms will in their basic form obtain a feasible 
solution before the very last iteration.

4  Solvers

This section is intended as an introduction to commonly available MINLP solv-
ers, and to describe their main properties. Most of the solvers are not based on a 
single “pure” algorithm but they combine several techniques and ideas to improve 
their performance. On top of this, MINLP solver technology has evolved from the 
more mature NLP and MILP fields, and most MINLP solvers rely heavily on such 
subsolvers. Among the MILP solvers, the most recognized commercial solvers are 
CPLEX (IBM ILOG CPLEX Optimization Studio 2017), Gurobi (Gurobi 2018), 
and XPRESS (FICO 2017). The solvers GLPK (Makhorin 2008) and Cbc (Forrest 
2005), the latter is a part of the COIN-OR initiative (Lougee-Heimer 2003), and 
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are among the most recognized open-source solvers for MILP. All of these solv-
ers implement an arsenal of methods within a branch and cut framework. In the 
NLP case, solvers like CONOPT (Drud 1994), Knitro (Byrd et  al. 2006), Mosek 
(Andersen and Andersen 2000), and SNOPT (Gill et al. 2005) are well-known com-
mercial options, and IPOPT (Wächter and Biegler 2006) is a well-known open-
source solver (also part of the COIN-OR initiative). There exists more variability 
in the algorithms behind NLP solvers, e.g., CONOPT implements a Generalized 
Reduced Gradient (GRG) method, while IPOPT, Knitro, and Mosek use an inte-
rior-point method, and SNOPT uses a sequential quadratic programming (SQP) 
approach; see Biegler (2010) for a review in NLP.

Besides convexity, some of the solvers mentioned here also require an algebraic 
formulation of the problem. By analyzing the problem structure and applying dif-
ferent reformulations for instance it is, e.g., possible to obtain tighter relaxations. 
Furthermore, some of the NLP solvers also require the nonlinear functions to be 
twice continuously differentiable to guarantee convergence, which in turn imposes 
additional restrictions on some of the MINLP solvers.

In this section, we only mention the main features of the solvers, and for more 
details see the references given in the solver sections. A summary of solvers and 
software for MINLP problems was previously also given by Bussieck and Vigerske 
(2010). The solvers are implemented in a variety of programming languages, either 
available as standalone executables or libraries accessible from algebraic modeling 
software like GAMS, AMPL, and AIMMS. Other solvers have been implemented 
directly in the same programming languages as their modeling systems, e.g., MAT-
LAB, Python-Pyomo, Julia-JuMP. The solvers used in the numerical comparison are 
listed in alphabetical order below.

4.1  AlphaECP

License type:  Commercial
Interfaces:  GAMS, NEOS
URL:  www.gams.com/lates t/docs/S_ALPHA ECP.html

AlphaECP (Alpha Extended Cutting Plane) is a solver based on the �ECP algorithm 
developed by T. Westerlund’s research group at Åbo Akademi University and imple-
mented in GAMS by T. Lastusilta. By using the GAECP algorithm (Westerlund and 
Pörn 2002) the solver also has guaranteed convergence for pseudoconvex MINLP 
problems. AlphaECP mainly solves a sequence of MILP subproblems to generate 
a polyhedral outer approximation through cutting planes, but to speed-up conver-
gence, it occasionally solves NLP subproblems with fixed integer variables as well. 
To improve the capabilities of handling nonconvex problems, the algorithm also 
employs some heuristic techniques described in Lastusilta (2011). An important fea-
ture of AlphaECP is the technique to initially only solve MILP problems to feasibil-
ity Westerlund and Pörn (2002). This often results in a significant reduction in total 
solution time since fewer MILP subproblems are solved to optimality. AlphaECP 
can use all the NLP and MILP subsolvers available in GAMS.

http://www.gams.com/latest/docs/S_ALPHAECP.html
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4.2  ANTIGONE

License type:  Commercial
Interfaces:  GAMS, NEOS
URL:  www.gams.com/lates t/docs/S_ANTIG ONE.html

ANTIGONE (Algorithms for coNTinuous / Integer Global Optimization of Non-
linear Equations) is a global optimization solver developed by R. Misener and C. 
A. Floudas at Princeton University. As a global solver, ANTIGONE is not lim-
ited to only convex problems but is also able to solve a variety of nonconvex 
problems. It uses reformulations and decomposes nonlinear functions into con-
stant, linear, quadratic, signomial, linear fractional, exponential, and other gen-
eral nonconvex terms. Convex relaxations are then generated for the decomposed 
nonconvex terms and the relaxations are solved in a branch and cut framework 
(Misener and Floudas 2014, 2013). ANTIGONE uses the local solvers CONOPT 
or SNOPT for finding feasible solutions and CPLEX for lower bounding MILP 
relaxations. The solver also uses both feasibility- and optimality-based bound 
tightening to reduce the search space and obtain tighter relaxations.

4.3  AOA

License type:  Commercial (source code available)
Interfaces:  AIMMS
URL:  www.aimms .com/engli sh/devel opers /resou rces/solve rs/aoa

AOA (AIMMS Outer Approximation) is a module implemented in the AIMMS 
language (Hunting 2011). As the name suggests, the solver is based on OA and 
implements both normal OA and the LP/NLP-BB methods. The latter is the rec-
ommended one for convex problems and generates linearizations as lazy con-
straints utilizing MILP solver callbacks. To improve the performance and its 
capabilities for solving nonconvex problems, AOA may use nonlinear preprocess-
ing and a multi-start technique. The source code of AOA is included in AIMMS, 
so the user can fully customize the algorithm (Roelofs and Bisschop 2018). Since 
the AOA algorithm utilizes MILP callbacks, only CPLEX and Gurobi are avail-
able as linear subsolvers. For solving NLP problems CONOPT, IPOPT, Knitro, 
Minos and SNOPT can be used.

4.4  BARON

License type:  Commercial
Interfaces:  Standalone; AIMMS, AMPL, GAMS, JuMP, MATLAB, NEOS, 

Pyomo, YALMIP
URL:  www.minlp .com/baron 

http://www.gams.com/latest/docs/S_ANTIGONE.html
http://www.aimms.com/english/developers/resources/solvers/aoa
http://www.minlp.com/baron


 J. Kronqvist et al.

1 3

BARON (Branch and Reduce Optimization Navigator) is a global MINLP solver 
developed by N. V. Sahinidis’s research group (Ryoo and Sahinidis 1996; Tawar-
malani and Sahinidis 2005). The solver uses a polyhedral branch and bound 
technique, and thus, solves LP relaxations in the BB nodes. However, BARON 
also uses MILP relaxations as described by Zhou et  al. (2018) and Kılınç and 
Sahinidis (2018) and nonlinear relaxations (Khajavirad and Sahinidis 2018). 
Nonconvex problems are handled by generating convex underestimators and 
concave overestimators in combination with a spatial branch and bound tech-
nique. The solver utilizes automatic reformulations and convexity identification 
to decompose nonconvex functions into simpler functions with known convex 
or concave relaxations. The reformulations can also result in tighter lifted pol-
yhedral outer approximations as shown by Tawarmalani and Sahinidis (2005). 
BARON also uses advanced bound tightening and range reduction techniques 
to reduce the search space and uses local search techniques as primal heuris-
tics. BARON includes IPOPT, FilterSD or FilterSQP for solving NLP subprob-
lems, and it can also utilize any available NLP solver in GAMS. Cbc, CPLEX or 
Xpress can be used as LP and MILP subsolvers.

4.5  BONMIN

License type:  Open-source (EPL 1.0)
Interfaces:  Standalone; AMPL, C++, GAMS, JuMP, MATLAB, NEOS, OS, 

Pyomo, YALMIP
URL:  proje cts.coin-or.org/Bonmi n

BONMIN (Basic Open-source Nonlinear Mixed Integer Programming) is an 
open-source solver for MINLP problems developed by P. Bonami in a collabo-
ration between Carnegie Mellon University and IBM Research as part of the 
COIN-OR initiative (Bonami et al. 2008). The solver implements several algo-
rithms, and the user is able to choose between NLP-BB, LP/NLP-BB, OA, fea-
sibility pump, OA-based branch and cut, and a hybrid approach. Some computa-
tional results, as well as detailed descriptions of the main algorithms, are given 
by Bonami et al. (2008) and Bonami and Lee (2007). As subsolvers, BONMIN 
uses IPOPT for NLP and Cbc or CPLEX for MILP problems.

4.6  Couenne

License type:  Open-source (EPL 1.0)
Interfaces:  Standalone; AMPL, C++, GAMS, JuMP, NEOS, OS, Pyomo
URL:  proje cts.coin-or.org/Couen ne

Couenne (Convex Over and Under Envelopes for Nonlinear Estimation) is a global 
open-source solver for MINLP problems. It was developed as part of the COIN-
OR initiative by P. Belotti in a collaboration between Carnegie Mellon University 
and IBM Research. The solver implements an LP-based spatial branch and bound 

http://projects.coin-or.org/Bonmin
http://projects.coin-or.org/Couenne
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technique as its main algorithm, in addition to bound reduction techniques and 
primal heuristics (Belotti et al. 2009; Belotti 2010). Couenne features routines for 
calculating valid linear outer approximations of nonconvex constraints. It is cur-
rently the only global MINLP solver available in the COIN-OR Optimization Suite. 
Couenne uses IPOPT as NLP subsolver, CBC or CPLEX as MILP subsolver and 
CLP, CPLEX, Gurobi, SoPlex or Xpress as LP subsolver.

4.7  DICOPT

License type:  Commercial
Interfaces:  GAMS, NEOS
URL:  www.gams.com/lates t/docs/S_DICOP T.html

DICOPT (Discrete Continuous Optimizer) is a solver based on the OA method, 
developed by I. E. Grossmann’s research group at Carnegie Mellon University. The 
solver implements the equality relaxation and augmented penalty methods in com-
bination with OA (Viswanathan and Grossmann 1990). In the equality relaxation, 
the nonlinear equality constraints are relaxed as inequalities using the signs of the 
corresponding Lagrangean multipliers, given by one of the NLP subproblems. The 
augmented penalty method relaxes the linearizations with slack variables which 
are penalized in the objective of the MILP master problem of OA. Both methods 
are intended as heuristics for nonconvex MINLP problems, although if the equality 
constraints relax as convex inequalities the methods become rigorous. A feasibility 
pump algorithm is implemented as a primal heuristic to improve the solver’s perfor-
mance (Bernal et al. 2017). DICOPT can use any available MILP and NLP subsolv-
ers available in GAMS.

4.8  Juniper

License type:  Open-source (MIT)
Interfaces:  JuMP
URL:  www.githu b.com/lanl-ansi/junip er.jl

Juniper is an open-source MINLP solver implemented in Julia. It is developed by O. 
Kröger, C. Coffrin, H. Hijazi, and H. Nagarajan at Los Alamos National Laboratory. 
The solver implements an NLP-BB method with branching heuristics and primal 
heuristics, such as the feasibility pump (Kröger et  al. 2018). The solver also uses 
parallelization capabilities available in Julia to solve multiple NLP subproblems in 
parallel. For nonconvex problems, it acts as a heuristic. It can use any NLP solver 
available in JuMP for solving subproblems, and it can optionally use a MIP solver 
for its feasibility pump.

http://www.gams.com/latest/docs/S_DICOPT.html
http://www.github.com/lanl-ansi/juniper.jl
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4.9  Knitro

License type:  Commercial
Interfaces:  AIMMS, AMPL, C++, C#, Fortran, Java, JuMP, GAMS, NEOS, 

Pyomo, Python, YALMIP
URL:  www.artel ys.com/knitr o

Knitro is a commercial optimization software currently developed by Artelys (Byrd 
et  al. 2006). Knitro includes several algorithms for dealing with continuous prob-
lems, such as interior-point and active-set algorithms. The solver uses BB tech-
niques for problems with discrete variables, and the solver has three methods for 
dealing with MINLP problems. The first method uses an NLP-BB algorithm, and 
the second method is based on the LP/NLP-BB algorithm. The third method, based 
on a sequential quadratic programming approach, is mainly intended for problems 
with expensive function evaluations and can handle MINLP problems where the 
discrete variables are not relaxable, e.g., functions given by black-box simulators 
(Artelys 2018). By using default settings the solver will automatically choose which 
method to use.

4.10  LINDO

License type:  Commercial
Interfaces:  C, C++, Delphi, Excel/What’s Best!, Fortran, Java, JuMP, GAMS, 

LINGO, MATLAB, NEOS, .NET, Ox, Python, R
URL:  www.lindo .com

LINDO is a global solver developed by LINDO Systems Inc. (Lin and Schrage 
2009). It includes specific algorithms for solving LP, quadratic programming 
(QP), conic programming, semidefinite programming (SDP), and general NLP 
problems. For mixed-integer problems, LINDO uses a branch and cut approach 
(LINDO Systems Inc. 2017). The solvers deal with nonconvex problems by using 
reformulations and convex relaxations within a BB framework. LINDO also per-
forms preprocessing in combination with bound tightening and uses several local 
search techniques to quickly find good solutions. Non-smooth functions such as 
abs, min, floor, etc. are dealt with automatically via reformulation techniques. 
The solver is able to recognize convex quadratic, conic, and SDP terms, and an 
option for turning off the global search strategies, i.e., for convex problems, is 
available. To solve general nonlinear problems LINDO requires the NLP solver 
CONOPT. Furthermore, if the solver Mosek is available, it is used for efficiently 
solving conic and SDP problems.

http://www.artelys.com/knitro
http://www.lindo.com
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4.11  Minotaur

License type:  Open-source
Interfaces:  Standalone; AMPL, C++
URL:  wiki.mcs.anl.gov/minot aur

Minotaur (Mixed-Integer Nonlinear Optimization Toolkit: Algorithms, Underes-
timators, and Relaxations) is an open-source toolkit for solving MINLP problems 
developed in collaboration between Argonne National Laboratory, Indian Insti-
tute of Technology Bombay, and the University of Wisconsin-Madison (Mahajan 
et al. 2017). It implements several different algorithms in a common framework. 
Currently, Minotaur has two main approaches for convex MINLP based on the 
NLP-BB and LP/NLP-BB algorithms. It also has a global strategy for quadrati-
cally constrained QP. Minotaur implements both a nonlinear presolver and a fea-
sibility pump heuristic. Minotaur is able to use both filterSQP and IPOPT as NLP 
subsolvers and CLP or CPLEX as LP subsolvers.

4.12  Muriqui

License type:  Open-source (MIT)
Interfaces:  Standalone; AMPL, C++
URL:  www.wende lmelo .net/softw are

Muriqui is an open-source MINLP solver developed by W. Melo, M. Fampa, and 
F. Raupp, recently presented by Melo et al. (2018b). The solver has several algo-
rithms implemented, e.g., ECP, ESH, OA, LP/NLP-BB, and NLP-BB, as well as 
some heuristics approaches (Melo et  al. 2018a). The solver provides a platform 
for using the most common algorithms for convex MINLP with several customiz-
able parameters for the end user. For solving the resulting MILP and NLP sub-
problems, Muriqui can use CPLEX, Gurobi, Xpress (FICO 2017), Mosek, Glpk 
(Makhorin 2008), IPOPT and Knitro. Muriqui also utilizes callback functionality 
and so-called lazy constraints in CPLEX and Gurobi to perform the single-tree 
search in LP/NLP-BB and in the hybrid algorithm.

4.13  Pavito

License type:  Open-source (MPL 2.0)
Interfaces:  JuMP
URL:  www.githu b.com/julia opt/pavit o.jl

Pavito is an open-source solver for convex MINLP implemented in Julia by C. Coey, 
M. Lubin and J. P. Vielma. Its functionality was previously part of the Pajarito solver 
for conic MINLP, but the NLP functionality was recently moved into the Pavito 
solver (Coey et al. 2018). Contrary to the other solvers presented in this manuscript, 

http://wiki.mcs.anl.gov/minotaur
http://www.wendelmelo.net/software
http://www.github.com/juliaopt/pavito.jl
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Pajarito uses a conic problem formulation and is based on a conic outer approxima-
tion algorithm (Lubin et al. 2016). Conic MINLP formulations can be built using the 
Disciplined Convex Programming (DCP) modeling paradigm, which may require a 
reformulation of the test instances. Because of this, Pajarito is left out of the numeri-
cal comparison and only Pavito is included. Pavito is based on an OA algorithm and 
has the functionality to perform a single-tree search similar to LP/NLP-BB by utiliz-
ing callbacks to the MILP subsolver. Pavito can use any MILP and NLP subsolver 
available in JuMP for solving subproblems.

4.14  SBB

License type:  Commercial
Interfaces:  GAMS, NEOS
URL:  www.gams.com/lates t/docs/S_SBB.html

SBB (Simple Branch and Bound) is a solver in GAMS based on NLP-BB, devel-
oped by ARKI Consulting and Development A/S. SBB is based on a BB method 
that solves nonlinear relaxations in the form of NLP problems at each node. For 
nonconvex MINLP problems it works as a heuristic approach without convergence 
guarantees. For improved robustness the solver has functionality for dealing with 
NLP solver failures, by changing either subsolver or subsolver parameters. The 
solver also uses primal heuristics through the GAMS Branch-Cut-and-Heuristic 
facility (GAMS 2018). SBB can use any of the available NLP solvers in GAMS 
for solving the relaxed subproblems. However, it works best with solvers that take 
advantage of a near-optimal starting point such as CONOPT, Minos and SNOPT.

4.15  SCIP

License type:  Free for academic use (ZIB academic license); commercial
Interfaces:  Standalone; AMPL, C, GAMS, JuMP, MATLAB, NEOS, Java, 

Pyomo, Python
URL:  scip.zib.de

SCIP (Solving Constraint Integer Programs) was originally developed by 
T. Achterberg at the Zuse Institute Berlin in cooperation with TU Darmstadt, 
RWTH Aachen, and University of Erlangen-Nürnberg, as a general framework 
based on branching for constraint integer and mixed-integer programming using 
branch-cut-and-price, cf. Achterberg (2009). The solver is intended to be modu-
lar and it utilizes plugins to make it easy to modify (Gleixner et al. 2018). SCIP 
was extended by Vigerske and Gleixner (2018) to solve convex and noncon-
vex MINLP problem by utilizing polyhedral outer approximations and a spa-
tial branch and bound technique. The solver uses LP relaxations and cutting 
planes to provide strong dual bounds, while using Constraint Programming to 
handle arbitrary (non-linear) constraints and propagation to tighten domains of 

http://www.gams.com/latest/docs/S_SBB.html
http://scip.zib.de
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variables. A variety of primal heuristics and bound tightening techniques are 
also utilized in the solver. SCIP includes SoPlex for solving the LP subproblems, 
but can also utilize, CLP, CPLEX, Gurobi, Mosek or XPress if available. Fur-
thermore, the solver uses IPOPT for solving NLP subproblems in the nonlinear 
strategy.

4.16  SHOT

License type:  Open-source (EPL 2.0)
Interfaces:  Standalone; C++, GAMS
URL:  www.githu b.com/coin-or/shot

SHOT (Supporting Hyperplane Optimization Toolkit) is an open-source solver 
for convex MINLP developed by A. Lundell, J. Kronqvist and T. Westerlund 
at Åbo Akademi University (Lundell et  al. 2018; Kronqvist et  al. 2016). The 
solver utilizes polyhedral outer approximations, generated mainly by the ESH 
method, and iteratively constructs an equivalent MILP problem for its lower 
bound. For the upper bound, SHOT utilizes primal heuristics such as solving 
fixed NLP problems. If either CPLEX and Gurobi are used as MILP subsolver, 
SHOT can use a single-tree approach similar to the LP/NLP-BB technique. The 
supporting hyperplanes are then dynamically added by utilizing callbacks and 
lazy constraints, enabling the MILP solver to continue without rebuilding the 
branch and bound tree. If Cbc is used as MILP subsolver, a multi-tree strategy is 
used. The tight integration with the MILP solvers enables SHOT to fully benefit 
from their cut generating procedures, advanced node selection, and branching 
techniques. SHOT also includes the functionality to solve MIQP subproblems 
with CPLEX and Gurobi. The NLP problems are solved with either IPOPT or 
any of the applicable solvers in GAMS. A version of SHOT with reduced func-
tionality, e.g., only utilizing the multi-tree approach, is also available for Wolf-
ram Mathematica (Lundell et al. 2017).

4.17  Other MINLP solvers

Besides the solvers mentioned above, there are a few others solvers capable of 
solving convex MINLP problems that the authors are aware of. It should be noted 
that the solvers left out of the numerical comparison are not necessarily inferior 
compared to the other solvers. These solvers have been left out of the comparison 
due to one of the following reasons: not publicly available, not maintained within 
the last years, or not able to read the problem formats available in MINLPlib.

bnb is a MATLAB implementation of NLP-BB by K. Kuipers at the Univer-
sity of Groningen. The solver uses the fmincon routine in MATLAB’s Optimiza-
tion Toolbox for solving the integer relaxed subproblems. The MATLAB code 
for the solver can be downloaded from www.mathw orks.com/matla bcent ral/filee 
xchan ge/95-bnb.

http://www.github.com/coin-or/shot
http://www.mathworks.com/matlabcentral/fileexchange/95-bnb
http://www.mathworks.com/matlabcentral/fileexchange/95-bnb
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FICO Xpress-SLP is a solver currently developed by FICO (FICO 2017) 
and is available as both standalone binaries and a FICO Xpress-MOSEL mod-
ule. The solver has an interface to Python and can be used in several other pro-
gramming environments through the BCL Builder Component Library (FICO 
2017). Xpress-SLP is a local solver designed for large scale nonconvex prob-
lems, and global optimality is only guaranteed for convex problems. For general 
MINLP problems, the solver uses a mixed integer successive linear program-
ming (MISLP) approach. With the MISLP approach, it is, e.g., possible to use 
an NLP-BB technique where the NLP subproblem at each node is solved using a 
successive linear programming (SLP) technique. For certain types of problems, 
such as convex MIQP, MIQCQCP and MISOCP, the solver detects convexity and 
automatically reverts to FICO Xpress’s purpose written solvers. The solver also 
includes some heuristic approaches for quickly obtaining solutions. More infor-
mation about FICO and its solvers can be found at www.fico.com/en/produ cts/
fico-xpres s-optim izati on.

FilMINT is an MINLP solver developed by K. Abhishek, S. Leyffer and J. Lin-
deroth based on the NLP/LP-BB algorithm (Abhishek et  al. 2010). The solver is 
built on top of the MILP solver MINTO (Nemhauser et al. 1994) and uses filterSQP 
(Fletcher and Leyffer 1998) for solving NLP relaxations. By utilizing functionality 
in MINTO, FilMINT is able to combine the NLP/LP-BB algorithm with features 
frequently used by MILP solvers, such as cut generation procedures, primal heuris-
tics, and enhanced branching and node selection rules. There is an AMPL interface 
available for FilMINT and the solver can also be used through the NEOS server. For 
more details, we refer to Abhishek et al. (2010).

fminconset is an implementation of NLP-BB in MATLAB by I. Solberg. The 
NLP subproblems are solved with MATLAB’s fmincon routine in the Optimization 
Toolbox. The solver is available to download from www.mathw orks.com/matla bcent 
ral/filee xchan ge/96-fminc onset .

GAECP (Generalized Alpha Extended Cutting Plane) is a solver based on the 
GAECP algorithm (Westerlund and Pörn 2002) developed by T. Westerlund. The 
solver also uses supporting hyperplanes as in the ESH algorithm and is able to guar-
antee convergence for MINLP problems with nonsmooth pseudoconvex functions. 
The solver is described in detail in Westerlund (2018).

MILANO (Mixed-Integer Linear and Nonlinear Optimizer) is a MATLAB-
based MINLP solver developed by H. Y. Benson at Drexel University. There 
are two versions of the solver available; one uses an NLP-BB technique and the 
other is based on OA. The NLP-BB technique version uses an interior point NLP 
solver with warm-starting capabilities described in Benson (2011). The solver 
can be downloaded from www.pages .drexe l.edu/~hvb22 /milan o.

MindtPy (Mixed-Integer Nonlinear Decomposition Toolbox in Pyomo) is 
an open-source software framework implemented in Python for Pyomo by the 
research group of I. Grossmann at Carnegie Mellon University. This toolbox 
implements the ECP, GBD, and OA algorithms, together with primal heuristics. 
It relies on Pyomo to handle the resulting MILP and NLP subproblems, allow-
ing any of the solvers compatible with Pyomo to be used with MindtPy (Bernal 

http://www.fico.com/en/products/fico-xpress-optimization
http://www.fico.com/en/products/fico-xpress-optimization
http://www.mathworks.com/matlabcentral/fileexchange/96-fminconset
http://www.mathworks.com/matlabcentral/fileexchange/96-fminconset
http://www.pages.drexel.edu/%7ehvb22/milano
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et  al. 2018). The toolbox is available in the following repository www.githu 
b.com/berna lde/pyomo /tree/mindt py.

MINLP_BB was developed by S. Leyffer and R. Fletcher as a general solver 
for MINLP problems (Leyffer 1999). The solver is based on NLP-BB and uses 
filterSQP for solving the continuous relaxations. There are interfaces to AMPL 
and Fortran. Furthermore, the solver can also be used in MATLAB through 
the TOMLAB optimization environment (Holmström 1999). More information 
about the solver is available at wiki.mcs.anl.gov/leyff er.

MINOPT (Mixed Integer Nonlinearl Optimizer) was developed by C.A. Sch-
weiger and C.A. Floudas as a modelling language for a wide range of optimiza-
tion problems (Schweiger and Floudas 1998). For MINLP problems MINOPT 
offered several algorithms, such as variants of OA and GBD.

MISQP (Mixed-Integer Sequential Quadratic Programming) is a solver based 
on a modified sequential quadratic programming (SQP) algorithm for MINLP 
problems presented by Exler and Schittkowski (2007). The solver is developed 
by K. Schittkowski’s research group and the University of Bayreuth. MISQP is 
intended for problems where function evaluations may be expensive, e.g., where 
some function values are obtained by running a simulation. Unlike some of the 
other solvers, MISQP does not need to evaluate functions at fractional values for 
integer variables which can be an important property, e.g., for simulation-based 
optimization tasks. There is an interface in MATLAB through TOMLAB as well 
as a standalone Fortran interface. A more detailed description of the solver is 
available at tomwi ki.com/MISQP .

Finally, there are a few other deterministic solvers that the authors are aware 
of, capable of handling convex MINLP problems but mainly focusing on non-
convex MINLP. These solvers are: Decogo (DECOmposition-based Global 
Optimizer; Nowak et al. (2018)), NOMAD (Le Digabel 2011), POD (Piecewise 
convex relaxation, Outer-approximation, and Dynamic discretization; Nagarajan 
et al. (2017)), LaGO (Lagrangian Global Optimizer; Nowak et al. (2002)). For 
more details on nonconvex MINLP see, e.g., Tawarmalani and Sahinidis (2002), 
Liberti and Maculan (2006) and Floudas (2000).

5  Benchmark details

The objective of the forthcoming two sections is to compare some of the convex 
MINLP solvers mentioned in the previous section by applying them on a com-
prehensive set of test problems. There are some benchmarks available in litera-
ture, e.g., Kronqvist et  al. (2016), Bonami et  al. (2012), Lastusilta (2011) and 
Abhishek et al. (2010). However, these are limited to only a few of the solvers 
considered here or used a smaller set of test problems. The goal here is to give 
a comprehensive up-to-date comparison of both open-source and commercial 
solvers available in different environments. The main interest has been to study 
how the solvers perform on a desktop computer, and all the benchmarks were 
performed on a Linux-based PC with an Intel Xeon 3.6  GHz processor with 
four physical cores (able to process eight threads at once) and 32 GB memory. 

http://www.github.com/bernalde/pyomo/tree/mindtpy
http://www.github.com/bernalde/pyomo/tree/mindtpy
http://wiki.mcs.anl.gov/leyffer
http://tomwiki.com/MISQP
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We have allowed the solvers to use a maximum of eight threads to replicate a 
real-world situation where one tries to solve the problems with all the available 
resources. However, it is worth mentioning that the solvers and subsolvers uti-
lize parallelism to different extents.

In the comparison, we have included three versions of BONMIN: BONMIN-
OA based on OA, BONMIN-BB based on NLP-BB, and BONMIN-HYB, which 
is a variant of the LP/NLP-BB algorithm. We have also included two versions of 
Minotaur: Minotaur-QG based on the LP/NLP-BB algorithm, and Minotaur-BB 
based on NLP-BB. Two version of Knitro where considered: Knitro-QG based 
on LP/NLP-BB and Knitro-BB based on NLP-BB. These different versions of 
the same solver were included since they represent different approaches for solv-
ing the MINLP problems and their performance vary significantly. The solvers 
in the comparison are implemented in and used from different environments 
(GAMS, AIMMS, and Julia/JuMP), and the subsolvers available may vary. 
Where possible, we have tried to use CONOPT and IPOPT as the NLP solver, 
and CPLEX as the (MI)LP solver. The linear solver used in IPOPT was MA27 
(HSL 2018) which is the default if available. For all applicable solvers, the lat-
est version of CPLEX (12.8) was used; the exception is Minotaur which we only 
got working with version 12.6.3. Couenne warns against using another LP solver 
than CLP, which we respected since it actually improved performance signifi-
cantly. For Minotaur, filterSQP was used as NLP subsolver as it is recommended 
over IPOPT, and overall performed better. A full list of solvers and subsolvers 
used are given in Table 1.

The termination criteria used with the solvers is the relative objective gap 
between the upper and lower objective bounds, where we used a tolerance of 
0.1% with all the solvers. To make sure that the solvers did not terminate prema-
turely due to other built-in termination criteria and to avoid clear solver failures, 
some specific solver options were given; these are listed in Appendix B. Except 
for these, default settings were used for all solvers. Furthermore, a wall clock 
time limit of 900  s was also used with all solvers. Even with the 15-min time 
limit per problem, the total running time for the experiments was more than two 
weeks.

5.1  Problem sets

The problems considered here are from the problem library MINLPLib (MINLPLib 
2018), which as of July 2018 consists of 1534 instances. These instances originate 
from many different sources and applications as indicated in the library. Out of the 
instances, we have chosen all problems that satisfy the following criteria: classified 
as convex, containing at least one discrete variable and some nonlinearity (either in 
the objective function or in the constraints). We also excluded the instance mean-
varxsc utilizing semicontinuous variables not supported by all of the solvers. 
The smallinvSNPr* instances were also excluded, since they recently lost their 
convex classification in MINLPLib due to rounding errors in the problem format 
that actually made them slightly nonconvex. In total, there were 335 instances that 
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satisfied the given criteria, and these constitute our master benchmark test set. Some 
statistics of the problems are available in Table 2

The problems selected represent a variety of different types of optimization prob-
lems with different properties such as number of variables, number of discrete vari-
ables, and number of nonlinear terms. Some of the problems also represent different 
formulations of the same problems, e.g., both big-M and convex hull formulation of 
disjunctions. It is therefore of interest to compare the solvers not only on the entire 
test set but also on smaller subsets with specific properties. We have partitioned the 
test set into groups, representing both integer and nonlinear properties, to compare 
both the solvers and algorithms for the different types of problems. The following 
criteria were used to partition the test problems into subsets:

5.1.1  Continuous relaxation gap

By solving a continuous relaxation of the MINLP problem and comparing the opti-
mal objective value of the relaxed problem with the actual optimal objective value, 
we are able to determine the continuous relaxation gap. To avoid differences due to 
scaling, we use a relative value calculated as 

(8)Relative continuous relaxation gap =
|z∗ − z̄|

max {|z∗|, 0.001} × 100%,

Table 1  The table shows which subsolvers were used with each solver, and on which platform the solver 
was run on

MINLP solver Subsolvers used Platform

MILP/LP NLP

AlphaECP 2.10.06 CPLEX 12.8 CONOPT 3.17I GAMS 25.1.2
Antigone 1.1 CPLEX 12.8 CONOPT 3.17I GAMS 25.1.2
AOA CPLEX 12.8 CONOPT 3.14V AIMMS 4.59.4.1
BARON 18.5.8 CPLEX 12.8 CONOPT 3.17I GAMS 25.1.2
BONMIN 1.8 CPLEX 12.8 IPOPT 3.12 GAMS 25.1.2
Couenne 0.5 CLP 1.16 IPOPT 3.12 GAMS 25.1.2
DICOPT 2 CPLEX 12.8 CONOPT 3.17I GAMS 25.1.2
Juniper 0.2.0 CPLEX 12.8 IPOPT 3.12.1 JuMP 0.18.4
Knitro 10.3.0 – – GAMS 25.1.2
Lindo 11.0 CPLEX 12.8 CONOPT 3.17I GAMS 25.1.2
Minotaur 05-21-2018 CPLEX 12.6.3 filterSQP 20010817 –
Muriqui 0.7.01 CPLEX 12.8 IPOPT 3.12.1 –
Pavito 0.1.0 CPLEX 12.8 IPOPT 3.12.1 JuMP 0.18.4
SBB CPLEX 12.8 CONOPT 3.17I GAMS 25.1.2
SCIP 5.0 CPLEX 12.8 IPOPT 3.12 GAMS 25.1.2
SHOT 0.9.3 CPLEX 12.8 CONOPT 3.17I GAMS 25.1.2
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 where z∗ denotes the optimal objective value and z̄ denotes to optimum of the con-
tinuous relaxation. The continuous relaxation gap varies significantly for the test 
problems: some instances have a gap larger than 1000% and for some instances it is 
smaller than 1%. Based on the gap, given by Eq. (8), we have divided the test prob-
lems into two subsets: problems with a large gap ( ≥ 50% ) and problems with a small 
gap ( < 50% ). According to this classification, there are 151 problems with a large 
gap (average gap 188%) and 184 with a small gap (average gap 7.2%).

5.1.2  Nonlinearity

Some of the test problems are almost linear with only a few nonlinear terms, 
whereas some test problems are nonlinear in each variable. The test problems are 
here classified based on the following nonlinearity measure 

 where nnonlin is the number of variables involved in a nonlinear term and ntot is the 
total number of variables. The test problems are divided into the following two cat-
egories: problems with high degree of nonlinearity ( ≥ 50% ), and problems with low 
degree of nonlinearity ( < 50% ). The set with high degree of nonlinearity contains 
103 problems with an average nonlinearity measure of 89%, while the set with low 
degree of nonlinearity contains 232 problems with an average nonlinearity measure 
of 14%.

5.1.3  Discrete density

The number of discrete variables also varies significantly in the test problems. Some 
problems contain only a few discrete variables, while others contain only discrete 
variables. To avoid a division based mainly on the problem size, we have chosen to 
divide the problems based on the following measure 

(9)Degree of nonlinearity =
nnonlin

ntot
× 100%,

Table 2  Statistics of the convex MINLP instances used in the benchmark

Objective function type Problem count

Linear objective 244
Quadratic objective 66
General nonlinear objective 25

Minimum Arithmetic mean Maximum

Number of discrete variables 2 93 1500
Number of variables 2 989 107,222
Number of constraints 0 1213 108,217
Number of nonlinear constraints 0 16 112
Number of nonlinear variables 1 132 4521
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 Here nint and nbin are the number of integer and binary variables, and ntot is the total 
number of variables. Again the test problems are divided into two subsets: prob-
lems with a high discrete density ( ≥ 50% ) and problems with a low discrete density 
( < 50% ). The first category contains 120 problems with an average discrete density 
of 81%, and the second category contains 215 problems with an average density of 
27%.

A list of the problems in each category is given in “Appendix  A”, which also 
shows the continuous relaxation gap, degree of nonlinearity, and discrete density for 
each test problem. Scatter plots are also presented in “Appendix A” that show there 
is little to no correlation between the problem categories.

5.2  Reporting

All the results were analyzed using PAVER (Bussieck et al. 2014), which is a tool 
for comparing the performance of optimization solvers and analyzing the qual-
ity of the obtained solutions. The reports generated by PAVER, as well as all the 
results obtained by the individual solvers are available at andre aslun dell.githu b.io/
minlp bench marks . The parameters used for generating the reports are also available 
within the reports.

A comment must be made regarding the choice of the parameter gaptol in 
PAVER, which was set to the value 1.002 × 10−3 instead of the value used as ter-
mination criteria ( 1 × 10−3 = 0.1% ). The small perturbation is needed due to dif-
ferences in how the relative gap is calculated by the solvers. Some of the solvers 
calculate the relative gap by dividing the gap by the lower bound, whereas others 
divide by the smallest absolute value of either the upper or lower bound. For exam-
ple, BARON and ANTIGONE would, without the small perturbation, seem to ter-
minate prematurely on a large number of instances and these would all be marked as 
failed by PAVER.

PAVER also calculates so-called virtual best and virtual worst solvers. The vir-
tual best solver is the best (in our graphs the fastest) successful solver selected for 
each individual problem instance, and the virtual worst is then the slowest for each 
instance. These virtual solvers provide a good comparison for how good or bad an 
individual solver is compared to all the solvers.

Since MINLPLib also provides a list of known optimal objective values, as 
well as upper and lower objective bounds, PAVER is able to compare the obtained 
solutions by the known bounds in MINLPLib. PAVER is, thus, also able to cal-
culate the so-called primal gap, i.e., the difference between the obtained solution 
and the best-known integer solution, which can be used to analyze the quality 
of the obtained solutions. For example, there are cases where the solver returns 
the optimal solution, but it has not been able to verify optimality within the time 
limit. PAVER also uses known objective bounds available in MINLPLib to check 
whether the solvers obtained correct solutions and bounds for the test problems.

(10)
Discrete density =

nint + nbin

ntot
× 100%.

http://andreaslundell.github.io/minlpbenchmarks
http://andreaslundell.github.io/minlpbenchmarks
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6  Results

The results are presented using solution profiles showing the number of individual prob-
lems that a solver is able to solve as a function of time. Note that the profiles do not 
represent the cumulative solution time, but shows how many individual problems the 
solvers can solve within a specific time. We have not used performance profiles where 
the time is normalized with respect to best solver (Dolan and Moré 2002) since these are 
not necessarily good for comparing several solvers as noted by Gould and Scott (2016).

In all solution profiles in this section, we have chosen to divide the solvers into two 
categories to make the solution profiles more easily readable. The solvers are divided 
into MILP decomposition-based solvers and BB-based solvers. The division is not 
completely straightforward since some of the solvers could fit into both categories. 
However, the division is only intended to make it easier to read the results. The solv-
ers classified as MILP decomposition-based solvers are AlphaECP, AOA, BONMIN-
OA, DICOPT, Knitro-QG, Minotaur-QG, Muriqui, Pavito, and SHOT. Solvers classi-
fied as BB-based solvers are ANTIGONE, BARON, BONMIN-BB, BONMIN-HYB, 
Couenne, Juniper, Knitro-BB, LINDO, Minotaur-BB, SBB, and SCIP. The time scales 
are also divided into two parts to better highlight differences between the solvers, and it 
is linear in the first 10 s, and logarithmic between 10 and 900 s. In each plot, the solvers 
in the nonactive group are indicated with thin gray lines, while the others are as shown 
in the respective legends. The same line style is used for a specific solver in all figures. 
If there are several different strategies used with the same solvers, different line types 
(solid, dashed, dotted) are used while the color remain the same. In the right margin 
of each profile, the solvers are ranked according to the number of solved problems (as 
indicated within parenthesis). The virtual best and virtual worst solvers are shown in the 
figures as the top and bottom thick gray lines, and the region between them is shaded.

Figures 1 and 2 show the solution profiles when applying the solvers on the com-
plete set of test problems. As mentioned, the solution profiles indicate the number of 
problems that have been solved by the individual solvers as a function of time. A prob-
lem is defined as solved in this set of experiments if the relative objective gap, as cal-
culated by PAVER, is ≤ 0.1002% (see note above). To better examplify the differences 
between the solvers, the same data is used for generating Table 3 which shows “snap-
shots” of the solution profile for different levels of the number of solved problems.

Out of the BB-based solvers, BARON is able to solve the most instances (306) 
within the time limit followed by SCIP (295) and Minotaur-BB (258). SHOT is able to 
solve the most problems out of the MILP decomposition-based solvers (312), closely 
followed by AOA (310) and Muriqui (301). SHOT and AOA are overall the fastest 
solvers for the test set. The virtual best solver is able to solve 326 of the problems while 
the virtual worst only manages to solve 39. The virtual best and worst solvers indicate a 
huge spread in the solvers’ performance for different problems and highlight the impor-
tance of choosing a solver well suited for the problem type. The virtual best solver also 
shows that a large portion of the test problems are manageable for at least one of the 
solvers, while judging by the virtual worst solver, it is clear the test set is challenging.

Figure  3 presents statistics regarding the termination of the solvers, e.g., how 
many errors and timeouts occurred. These values are as reported by the solver, but 
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also include solver crashes where no solution was returned. PAVER also verifies if 
the solver runs were completed successfully, e.g., by comparing the objective values 
returned to known values or bounds; if there is a discrepancy, these instances are 
given the status failed. Statistics on instances marked as failed are shown in Fig. 4.

Figure 5 shows the number of problems where the solver was able to obtain a 
solution within 0.1% and 1% of the best-known solution, but not necessarily able to 
verify optimality. The figure shows that none of the solvers was able to obtain a solu-
tion within 1% of the best-known solution for all of the problems, given the 900 s 
time limit. For example, BARON was able to obtain a solution within 1% of the 
optimum for 317 problems, and SHOT obtained such a solution for 320 problems.

The number of instances solved to a relative objective gap, i.e., difference between 
the upper and lower objective bound, of 0.1%, 1% and 10%, per solver is shown in 
Fig. 6. By comparing Figs. 5 and 6, it can be observed that some of the solvers are 
able to obtain a solution within 0.1% of the optimum to significantly more problems 
than they are able to verify as optimal. For example, AlphaECP and ANTIGONE 
seems to be struggling with obtaining a tight lower bound for some of the problems, 
since they are able to obtain solutions within 0.1% for 300 (AlphaECP) and 275 
(ANTIGONE) problems, while only verifying optimality for 276 and 236 instances 
respectively. Since ANTIGONE is a global solver without a user-selected convex 
strategy, it might fail to recognize some of the problems as convex, and therefore, 
generate weaker relaxations. This would explain the difference between the number 
of optimal solutions found and number of solutions verified as optimal.

Since it may be difficult to draw more detailed conclusions from the results in 
Figs. 1 and 2, the next sections consider subsets of test problems with specific prop-
erties. A summary of the results for the different subsets is given in Sect. 6.4.

Fig. 3  The solution status returned from the solvers
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6.1  Impact of the continuous relaxation gap

In this section, we consider problems with a large continuous relaxation gap and 
problems with a small continuous relaxation gap. Figure 7 shows the solution pro-
files of the solvers for the problems with a large gap, and Fig. 8 shows the solution 

Fig. 4  The number of solutions per solver flagged as failed by PAVER. Most often, the cause is that the 
returned solution is not within the bounds provided in MINLPLib

Fig. 5  The number of instances in the benchmark where the solvers found a a solution within 0.1%, 1% 
and 10% of the best known objective value
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profiles for those with a small gap. By comparing the figures, there is a clear dif-
ference for the solvers based on a BB approach, as these clearly perform better on 
the problems with a small gap compared to those with a large continuous relaxation 
gap. For example, BONMIN-BB is one of the most efficient solvers for the problems 
with a small gap, both in terms of speed and number of solved problems, while it is 
clearly out-performed by several solvers for the problems with a large gap.

The NLP-BB-based solvers, BONMIN-BB, Juniper, Knitro-BB, Minotaur-BB, 
and SBB solve significantly fewer problems with a large gap than the solvers based 
on either an ECP, ESH or OA (AlphaECP, BONMIN-OA, DICOPT, and SHOT). 
For problems with a large continuous relaxation gap, the BB trees may become 
larger and the more expensive subproblems in each node may make the NLP-BB-
based solvers suffer performance-wise. Using a polyhedral approximation within a 
BB framework, BARON and SCIP are not as strongly affected by the relaxation gap; 
this could partially be due to having simpler subproblems at each node.

Overall, the MILP decomposition-based solvers seem to be less affected by the 
continuous relaxation gap then the BB-based ones. Several of the MILP decomposi-
tion-based solvers, such as AOA and SHOT, are closely integrated with the MILP sub-
solver (CPLEX in this case), and rely on it for handling the integer requirements. This 
close integration enables the usage of several advanced features from the more mature 
MILP solvers, while NLP-BB-based solvers often need to manage branching, handling 
the BB tree, cut generation, and other techniques on their own. One can expect this 
advantage to be more important for problems that are challenging due to the integer 
requirements, which is often a trait of problems with large continuous relaxation gaps. 
As an example of the impact on the performance of a MILP decomposition-based 
solver that handle the integer requirements itself, consider Minotaur-QG (as it only 

Fig. 6  The number of instances in the benchmark where the solvers obtained an objective gap of 0.1%, 
1% and 10%
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Fig. 7  The solution profiles for problem instances with a high continuous relaxation gap as indicated in 
“Appendix A”
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Fig. 8  The solution profiles for problem instances with a low continuous relaxation gap as indicated in 
“Appendix A”
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uses CPLEX as a LP subsolver): The performance difference between Minotaur-QG 
and AOA are significant, even though they utilize the same basic algorithm.

6.2  Impact of nonlinearity

In this section, problem types with a high and low degree of nonlinearity are com-
pared, and the results are shown in Figs. 9 and 10. Several of the solvers use lineari-
zations to approximate the nonlinear functions in some steps of the solution proce-
dure, whereas solvers using an NLP-BB approach directly treats the nonlinearity in 
each node of the BB tree. As expected, most of the solvers utilizing linearizations 
perform significantly better on the problems with a low degree of nonlinearity, since 
BONMIN-OA, DICOPT, and SCIP are among the most efficient solvers in terms 
of both speed and number of problems solved. However, for problems with a high 
degree of nonlinearity they are outperformed by the NLP-BB-based solvers BON-
MIN-BB, Knitro-BB, Minotaur-BB, and SBB.

SHOT and the LP/NLP-BB-based solvers AOA, Minotaur-QG and Muriqui 
have quite similar behavior for both types of problems and perform well in both 
categories. These solvers rely on linearizations of the nonlinear constraints and one 
would, thus, expect them to be negatively affected by the degree of nonlinearity. 
However they all use a quite similar single-tree approach where NLP subproblems 
are solved in some of the nodes, which may help them to cope with problems with a 
high degree of nonlinearity. The LP/NLP-BB-based solver Knitro-QG also performs 
quite well for problems with a high degree of nonlinearity.

Most affected by the degree of nonlinearity seem to be the NLP-BB-based solv-
ers. For problems with a high degree of nonlinearity they performed overall well, 
with several of the NLP-BB-based solvers being among the most efficient ones. 
Thus, in this case there seems to be a clear advantage of directly treating the nonlin-
earities. For the problems with a low degree of nonlinearity, however, the NLP-BB-
based solvers did not perform as well in comparison with the other solvers.

6.3  Impact of discrete density

Finally, we compare how the solvers are affected by the relative number of discrete 
variables, i.e., integer and binary variables. Figures 11 and 12 show how the solvers 
perform for problems with high and low discrete density.

The MILP decomposition-based solvers perform similarly for both types of prob-
lems, and no obvious conclusions can be drawn from the results. However, again there 
is a clear difference for the NLP-BB-based solvers, and surprisingly many of these solv-
ers performed better than the other ones on the high discrete density set of problems. 
One could expect a correlation between the discrete density and continuous relaxa-
tion gap, and that a high discrete density would result in a high continuous relaxation 
gap. However, as shown in Fig. 13 in “Appendix A”, there is basically no correlation 
between the two for this set of test problems. Thus, by analyzing the results there is no 
clear reason for why the NLP-BB-based solvers perform better for the problems with a 
high discrete density, but one should keep in mind that the test set is somewhat limited.
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Fig. 9  The solution profiles for problem instances with a high level of nonlinear variables as indicated in 
“Appendix A”
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Fig. 10  The solution profiles for problem instances with a low level of nonlinear variables as indicated in 
“Appendix A”
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Fig. 11  The solution profiles for problem instances with a high level of discrete variables as indicated in 
“Appendix A”
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Fig. 12  The solution profiles for problem instances with a low level of discrete variables as indicated in 
“Appendix A”



 J. Kronqvist et al.

1 3

Both BARON and SHOT perform well on both sets of test problems, while they 
perform somewhat better on problems with a low discrete density. The OA approach 
seems to be well suited for the problems with a low discrete density, where DICOPT 
is one of the most efficient solvers and BONMIN-OA also manages to solve a 
large portion of the problems. AOA and Muriqui, both integrating the LP/NLP-BB 
method through callbacks and lazy constraints with the MILP solver, also perfoms 
well on both categories.

6.4  Summary of the results

How the solvers are affected by the continuous relaxation gap, degree of nonlinearity 
and discrete density is summarized in Table 4. The table shows the number of problems 
solved within each category as well as an indicator of how the solvers’ performances 
were affected by the specific properties. The performance indicator tries to show how 
the performance of a solver is affected by the problem properties with respect to the 
other solvers. If a solver clearly performed better in a category, with respect to speed 
and number of solved problems, it is indicated by ‘+’, and similarly ‘−’ indicates that 
solver performed worse for that category of problems. If the performance is similar 
within both categories it is indicated by ‘ ∼ ’. Each performance indicator has been cho-
sen by comparing how a specific solver performed in both the high and low category 
with respect to the other solvers. Note that a ‘–’ sign does not necessarily indicate that 
the solver performed poorly, it simply states that the solver did not perform as well as 
in the other category. For example, for the problems with a low degree of nonlinearity 
DICOPT is overall one of the fastest solvers. For the problems with a high degree of 
nonlinearity DICOPT also performs well, but not as well as in the other category, and 
this is indicated by a ‘+’ and ‘−’ sign in Table 4. That there are no significant changes 
for the performance of AOA with respect to both categories is indicated by ‘ ∼ ’ sign.

These indicators were obtained by carefully analyzing the performance profiles, 
and are not intended as a grade of the solver but to show how it is affected by dif-
ferent problem properties. The results presented in Table 4 indicates that BB-based 
solvers seem to be more affected by the problem properties considered here com-
pared to the MILP decomposition-based solvers. One possible explanation for the 
differences between the two types of solvers is that several of the MILP decompo-
sition-based solvers rely heavily on the MILP subsolver, and benefits from several 
advanced features from the MILP solver.

Comparing the global solvers (ANTIGONE, BARON, Couenne, LINDO, and 
SCIP) with the convex solvers is not completely fair since the global solvers are 
able to solve a wider class of problems. In the numerical comparison, one should 
keep in mind that these global solvers are intended for a different (more general) 
type of problems. Some of these solvers do not have a convex option, and thus, they 
have access to less information about the problem and might treat it as nonconvex. 
For example, the performance difference of ANTIGONE and Couenne compared 
to BARON and SCIP, may be explained with the solvers treating some of the con-
vex functions as nonconvex, and therefore, generate unnecessarily weak relaxations. 
BARON seems to be very efficient at identifying convex problems since it is able to 
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deal with the problems in the benchmark set in such an efficient manner. Even if it is 
a global solver, capable of handling a variety of nonconvex problems, it is also one 
of the most efficient solvers for convex problems.

Furthermore, one should not draw any conclusions on how the solvers perform on 
nonconvex problems based solely on the results presented in this paper. For example, 
the convex strategies in AOA and SHOT, the two most efficient solvers for this set of 
problems, do not necessarily work well for nonconvex problems, and in fact there is 
another strategy in AOA intended as an heuristic for nonconvex problems. Some of 
the nonglobal solvers may actually work quite well as heuristics for nonconvex prob-
lems, of course without any guarantee of finding the global or even a feasible solution.

7  Conclusions

The comparisons presented in this paper are mainly intended to help the readers make 
informed decisions about which tools to use when dealing with different types of 
convex MINLP problems. In the previous sections, we have shown how 16 different 

Table 4  The table shows how the solvers are affected by the problem properties described in Sect. 5.1

If a specific solver performs better for one of the categories it is indicated by a ‘+’ sign, and a ‘−’ sign 
indicates that the solver performs worse on that specific category. If the solver performs similarly on both 
categories it is indicated by ‘ ∼ ’. Furthermore, the number in each row shows the total number of prob-
lems that the solver was able to solve within a relative objective gap of 0.1% within 900 s

MINLP solver Integer relaxation gap Nonlinearity Discrete density

High Low High Low High Low

AlphaECP ∼  120 ∼  156 −  71 +  205 ∼  94 ∼  182
ANTIGONE +  114 −  122 ∼  76 ∼  160 +  97 −  139
AOA ∼  133 ∼  177 ∼  94 ∼  216 ∼  110 ∼  200
BARON ∼  133 ∼  173 ∼  94 ∼  212 ∼  107 ∼  199
BONMIN-BB −  60 +  173 +  90 −  143 +  96 −  137
BONMIN-OA ∼  125 ∼  167 −  80 +  212 ∼  99 ∼  193
BONMIN-HYB −  82 +  146 −  62 +  166 −  71 +  157
Couenne ∼  50 ∼  105 ∼  70 ∼  85 ∼  74 ∼  81
DICOPT ∼  122 ∼  170 −  78 +  214 ∼  99 ∼  193
Juniper −  52 +  137 +  75 −  114 ∼  75 ∼  114
Knitro-BB −  56 +  167 +  87 −  136 +  94 −  129
Knitro-QG −  43 +  155 +  78 −  120 +  84 −  114
LINDO −  36 +  127 +  76 −  87 +  87 −  76
Minotaur-QG ∼  120 ∼  164 ∼  82 ∼  202 ∼  100 ∼  184
Minotaur-BB −  99 +  159 +  89 −  169 +  102 −  156
Muriqui ∼  131 ∼  170 ∼  87 ∼  214 ∼  105 ∼  196
Pavito −  112 +  161 −  86 +  187 ∼  91 ∼  182
SBB −  54 +  169 +  91 −  132 +  90 −  133
SCIP ∼  124 ∼  171 −  82 +  213 +  108 −  187
SHOT ∼  138 ∼  174 ∼  92 ∼  220 −  104 +  208
Number of problems 151 183 103 232 120 215
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solvers performed on a test set containing 335 MINLP instances. By comparing the 
solvers on MINLP instances with different properties we noticed significant differ-
ences in the solvers’ performance. For example, the solvers based on NLP-BB were 
strongly affected by both the continuous relaxation gap and the degree of nonlinear-
ity. Several of the solvers are based on the same main algorithms, although they differ 
significantly in terms of speed and number of problems solved. The differences are 
mainly due to different degrees of preprocessing, primal heuristics, cut generation 
procedures, and different strategies used by the solvers. The performance differences 
highlight the importance of such techniques for an efficient solver implementation.

For the test set considered here, SHOT and AOA were the overall fastest solvers. 
Both of the solvers are based on a single-tree approach closely integrated with the 
MILP solver by utilizing callbacks to add the linearizations as lazy constraints. The 
results show the benefits of such a solution technique and support the strong belief 
in the single-tree approach by Abhishek et al. (2010) and Belotti et al. (2013). The 
close integration with the MILP solver allows AOA and SHOT to benefit from dif-
ferent techniques integrated within the MILP solver, such as branching heuristics, 
cut generation procedures, and bound tightening.

Overall, several of the solvers performed well on the test set and were able to solve 
a large portion of the problems. The most instances any solver could solve within the 
time limit was 312 instances, and by combining all the solvers we where able solve 
326 of the 335 MINLP problems to a 0.1% guaranteed optimality gap. However, it 
should be noted that many of the test instances are quite small and simple compared 
to industry-relevant problems. Still today, real-world problems must often be simpli-
fied and reduced in size to obtain tractable formulations, in the process limiting the 
practical benefits of MINLP. Thus, in order to fully benefit from convex MINLP as 
a tool for design and decision-making, both further algorithmic research and solver 
software development are required. We also hope that this paper encourages MINLP 
users to submit their problems to the instances libraries, e.g., MINLPLib and www.
minlp .org, to benefit both MINLP solver developers and end users.
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Appendix A

The following table contains the problem names and their classifications with 
regards to the different benchmark sets in Sect. 5.1. Correlation between the catego-
ries are shown in Fig. 13.

Instance name Relaxation Nonlinearity Discreteness

Gap (%) Cat. Measure (%) Cat. Measure (%) Cat.

alan 0.89 Low 38 Low 50 High
ball_mk2_10 – High 100 High 100 High
ball_mk2_30 – High 100 High 100 High
ball_mk3_10 – High 100 High 100 High
ball_mk3_20 – High 100 High 100 High
ball_mk3_30 – High 100 High 100 High
ball_mk4_05 – High 100 High 100 High
ball_mk4_10 – High 100 High 100 High
ball_mk4_15 – High 100 High 100 High
batch 9.2 Low 48 Low 52 High
batch0812 5.6 Low 40 Low 60 High
batchdes 3.9 Low 53 High 47 Low
batchs101006m 4.5 Low 18 Low 46 Low
batchs121208m 3.1 Low 15 Low 50 High
batchs151208m 2.8 Low 14 Low 46 Low
batchs201210m 1.7 Low 12 Low 45 Low
clay0203h 100 High 20 Low 20 Low
clay0203m 100 High 20 Low 60 High
clay0204h 100 High 15 Low 20 Low
clay0204m 100 High 15 Low 62 High
clay0205h 100 High 12 Low 19 Low
clay0205m 100 High 13 Low 63 High
clay0303h 100 High 27 Low 21 Low
clay0303m 100 High 18 Low 64 High
clay0304h 100 High 20 Low 20 Low
clay0304m 100 High 14 Low 64 High
clay0305h 100 High 16 Low 20 Low
clay0305m 100 High 12 Low 65 High
cvxnonsep_normcon20 0.34 Low 100 High 50 High
cvxnonsep_normcon20r 0.34 Low 50 High 25 Low
cvxnonsep_normcon30 0.54 Low 100 High 50 High
cvxnonsep_normcon30r 0.54 Low 50 High 25 Low
cvxnonsep_normcon40 0.78 Low 100 High 50 High
cvxnonsep_normcon40r 0.78 Low 50 High 25 Low
cvxnonsep_nsig20 0.16 Low 100 High 50 High
cvxnonsep_nsig20r 0.16 Low 50 High 25 Low
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Instance name Relaxation Nonlinearity Discreteness

Gap (%) Cat. Measure (%) Cat. Measure (%) Cat.

cvxnonsep_nsig30 0.11 Low 100 High 50 High
cvxnonsep_nsig30r 0.12 Low 50 High 25 Low
cvxnonsep_nsig40 0.16 Low 100 High 50 High
cvxnonsep_nsig40r 0.16 Low 50 High 25 Low
cvxnonsep_pcon20 0.55 Low 100 High 50 High
cvxnonsep_pcon20r 0.55 Low 51 High 26 Low
cvxnonsep_pcon30 0.47 Low 100 High 50 High
cvxnonsep_pcon30r 0.47 Low 51 High 25 Low
cvxnonsep_pcon40 0.39 Low 100 High 50 High
cvxnonsep_pcon40r 0.39 Low 51 High 25 Low
cvxnonsep_psig20 0.08 Low 100 High 50 High
cvxnonsep_psig20r 0.09 Low 50 High 24 Low
cvxnonsep_psig30 0.32 Low 100 High 50 High
cvxnonsep_psig30r 0.32 Low 50 High 24 Low
cvxnonsep_psig40 0.34 Low 100 High 50 High
cvxnonsep_psig40r 0.29 Low 50 High 24 Low
du-opt 1.2 Low 100 High 65 High
du-opt5 51 High 100 High 65 High
enpro48pb 6.9 Low 19 Low 60 High
enpro56pb 15 Low 19 Low 57 High
ex1223 15 Low 64 High 36 Low
ex1223a 2.0 Low 43 Low 57 High
ex1223b 15 Low 100 High 57 High
ex4 104 High 14 Low 69 High
fac1 0.11 Low 73 High 27 Low
fac2 23 Low 82 High 18 Low
fac3 30 Low 82 High 18 Low
flay02h 25 Low 4.3 Low 8.7 Low
flay02m 25 Low 14 Low 29 Low
flay03h 37 Low 2.5 Low 10 Low
flay03m 37 Low 12 Low 46 Low
flay04h 43 Low 1.7 Low 10 Low
flay04m 43 Low 10 Low 57 High
flay05h 46 Low 1.3 Low 10 Low
flay05m 46 Low 8.1 Low 65 High
flay06h 48 Low 1.1 Low 11 Low
flay06m 48 Low 7.0 Low 70 High
fo7 100 High 12 Low 37 Low
fo7_2 100 High 12 Low 37 Low
fo7_ar2_1 100 High 13 Low 38 Low
fo7_ar25_1 100 High 13 Low 38 Low
fo7_ar3_1 100 High 13 Low 38 Low
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Instance name Relaxation Nonlinearity Discreteness

Gap (%) Cat. Measure (%) Cat. Measure (%) Cat.

fo7_ar4_1 100 High 13 Low 38 Low
fo7_ar5_1 100 High 13 Low 38 Low
fo8 100 High 11 Low 38 Low
fo8_ar2_1 100 High 11 Low 39 Low
fo8_ar25_1 100 High 11 Low 39 Low
fo8_ar3_1 100 High 11 Low 39 Low
fo8_ar4_1 100 High 11 Low 39 Low
fo8_ar5_1 100 High 11 Low 39 Low
fo9 100 High 10 Low 40 Low
fo9_ar2_1 100 High 10 Low 40 Low
fo9_ar25_1 100 High 10 Low 40 Low
fo9_ar3_1 100 High 10 Low 40 Low
fo9_ar4_1 100 High 10 Low 40 Low
fo9_ar5_1 100 High 10 Low 40 Low
gams01 97 High 22 Low 76 High
gbd 0.00 Low 25 Low 75 High
hybriddynamic_fixed 10 Low 15 Low 14 Low
ibs2 0.22 Low 100 High 50 High
jit1 0.37 Low 48 Low 16 Low
m3 100 High 23 Low 23 Low
m6 100 High 14 Low 35 Low
m7 100 High 12 Low 37 Low
m7_ar2_1 100 High 13 Low 38 Low
m7_ar25_1 100 High 13 Low 38 Low
m7_ar3_1 100 High 13 Low 38 Low
m7_ar4_1 100 High 13 Low 38 Low
m7_ar5_1 100 High 13 Low 38 Low
meanvarx 0.41 Low 20 Low 40 Low
netmod_dol1 49 Low 0.3 Low 23 Low
netmod_dol2 16 Low 0.3 Low 23 Low
netmod_kar1 79 High 0.9 Low 30 Low
netmod_kar2 79 High 0.9 Low 30 Low
no7_ar2_1 100 High 13 Low 38 Low
no7_ar25_1 100 High 13 Low 38 Low
no7_ar3_1 100 High 13 Low 38 Low
no7_ar4_1 100 High 13 Low 38 Low
no7_ar5_1 100 High 13 Low 38 Low
nvs03 49 Low 100 High 100 High
nvs10 0.74 Low 100 High 100 High
nvs11 0.41 Low 100 High 100 High
nvs12 0.41 Low 100 High 100 High
nvs15 89 High 100 High 100 High
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Instance name Relaxation Nonlinearity Discreteness

Gap (%) Cat. Measure (%) Cat. Measure (%) Cat.

o7 100 High 12 Low 37 Low
o7_2 100 High 12 Low 37 Low
o7_ar2_1 100 High 13 Low 38 Low
o7_ar25_1 100 High 13 Low 38 Low
o7_ar3_1 100 High 13 Low 38 Low
o7_ar4_1 100 High 13 Low 38 Low
o7_ar5_1 100 High 13 Low 38 Low
o8_ar4_1 100 High 11 Low 39 Low
o9_ar4_1 100 High 10 Low 40 Low
portfol_buyin 3.9 Low 47 Low 47 Low
portfol_card 4.0 Low 47 Low 47 Low
portfol_classical050_1 3.2 Low 33 Low 33 Low
portfol_classical200_2 13 Low 33 Low 33 Low
portfol_roundlot 0.00 Low 47 Low 47 Low
procurement2mot 37 Low 1.5 Low 7.5 Low
ravempb 15 Low 25 Low 48 Low
risk2bpb 1.0 Low 0.6 Low 3.0 Low
rsyn0805h 5.0 Low 2.9 Low 12 Low
rsyn0805m 63 High 1.8 Low 41 Low
rsyn0805m02h 3.1 Low 2.6 Low 21 Low
rsyn0805m02m 160 High 1.7 Low 41 Low
rsyn0805m03h 1.7 Low 2.6 Low 21 Low
rsyn0805m03m 104 High 1.7 Low 41 Low
rsyn0805m04h 0.46 Low 2.6 Low 21 Low
rsyn0805m04m 57 High 1.7 Low 41 Low
rsyn0810h 3.8 Low 5.2 Low 12 Low
rsyn0810m 72 High 3.2 Low 40 Low
rsyn0810m02h 4.0 Low 4.6 Low 21 Low
rsyn0810m02m 298 High 2.9 Low 41 Low
rsyn0810m03h 2.8 Low 4.6 Low 21 Low
rsyn0810m03m 206 High 2.9 Low 41 Low
rsyn0810m04h 0.93 Low 4.6 Low 21 Low
rsyn0810m04m 113 High 2.9 Low 41 Low
rsyn0815h 6.7 Low 8.0 Low 12 Low
rsyn0815m 104 High 5.4 Low 39 Low
rsyn0815m02h 4.2 Low 6.9 Low 21 Low
rsyn0815m02m 277 High 4.7 Low 40 Low
rsyn0815m03h 3.1 Low 6.9 Low 21 Low
rsyn0815m03m 186 High 4.7 Low 40 Low
rsyn0815m04h 1.7 Low 6.9 Low 21 Low
rsyn0815m04m 230 High 4.7 Low 40 Low
rsyn0820h 7.3 Low 10 Low 12 Low
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Instance name Relaxation Nonlinearity Discreteness

Gap (%) Cat. Measure (%) Cat. Measure (%) Cat.

rsyn0820m 239 High 6.5 Low 39 Low
rsyn0820m02h 1.2 Low 8.2 Low 21 Low
rsyn0820m02m 536 High 5.5 Low 41 Low
rsyn0820m03h 3.6 Low 8.2 Low 21 Low
rsyn0820m03m 335 High 5.5 Low 41 Low
rsyn0820m04h 2.4 Low 8.2 Low 21 Low
rsyn0820m04m 380 High 5.5 Low 41 Low
rsyn0830h 10 Low 12 Low 13 Low
rsyn0830m 380 High 8.0 Low 38 Low
rsyn0830m02h 6.1 Low 10 Low 21 Low
rsyn0830m02m 674 High 6.5 Low 40 Low
rsyn0830m03h 3.0 Low 10 Low 21 Low
rsyn0830m03m 470 High 6.5 Low 40 Low
rsyn0830m04h 2.0 Low 10 Low 21 Low
rsyn0830m04m 392 High 6.5 Low 40 Low
rsyn0840h 8.2 Low 14 Low 13 Low
rsyn0840m 753 High 10 Low 37 Low
rsyn0840m02h 5.8 Low 12 Low 21 Low
rsyn0840m02m 876 High 7.8 Low 40 Low
rsyn0840m03h 2.3 Low 12 Low 21 Low
rsyn0840m03m 266 High 7.8 Low 40 Low
rsyn0840m04h 2.1 Low 12 Low 21 Low
rsyn0840m04m 508 High 7.8 Low 40 Low
slay04h 13 Low 5.7 Low 17 Low
slay04m 13 Low 18 Low 55 High
slay05h 5.9 Low 4.3 Low 17 Low
slay05m 5.9 Low 14 Low 57 High
slay06h 7.0 Low 3.5 Low 18 Low
slay06m 7.0 Low 12 Low 59 High
slay07h 4.6 Low 2.9 Low 18 Low
slay07m 4.6 Low 10 Low 60 High
slay08h 4.9 Low 2.5 Low 18 Low
slay08m 4.9 Low 8.7 Low 61 High
slay09h 4.3 Low 2.2 Low 18 Low
slay09m 4.3 Low 7.7 Low 62 High
slay10h 8.1 Low 2.0 Low 18 Low
slay10m 8.1 Low 6.9 Low 62 High
smallinvDAXr1b010-011 1.8 Low 97 High 97 High
smallinvDAXr1b020-022 0.36 Low 97 High 97 High
smallinvDAXr1b050-055 0.10 Low 97 High 97 High
smallinvDAXr1b100-110 0.04 Low 97 High 97 High
smallinvDAXr1b150-165 0.03 Low 97 High 97 High
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Instance name Relaxation Nonlinearity Discreteness

Gap (%) Cat. Measure (%) Cat. Measure (%) Cat.

smallinvDAXr1b200-220 0.01 Low 97 High 97 High
smallinvDAXr2b010-011 1.8 Low 97 High 97 High
smallinvDAXr2b020-022 0.36 Low 97 High 97 High
smallinvDAXr2b050-055 0.10 Low 97 High 97 High
smallinvDAXr2b100-110 0.04 Low 97 High 97 High
smallinvDAXr2b150-165 0.03 Low 97 High 97 High
smallinvDAXr2b200-220 0.01 Low 97 High 97 High
smallinvDAXr3b010-011 1.8 Low 97 High 97 High
smallinvDAXr3b020-022 0.36 Low 97 High 97 High
smallinvDAXr3b050-055 0.10 Low 97 High 97 High
smallinvDAXr3b100-110 0.04 Low 97 High 97 High
smallinvDAXr3b150-165 0.03 Low 97 High 97 High
smallinvDAXr3b200-220 0.01 Low 97 High 97 High
smallinvDAXr4b010-011 1.8 Low 97 High 97 High
smallinvDAXr4b020-022 0.36 Low 97 High 97 High
smallinvDAXr4b050-055 0.10 Low 97 High 97 High
smallinvDAXr4b100-110 0.04 Low 97 High 97 High
smallinvDAXr4b150-165 0.03 Low 97 High 97 High
smallinvDAXr4b200-220 0.01 Low 97 High 97 High
smallinvDAXr5b010-011 1.8 Low 97 High 97 High
smallinvDAXr5b020-022 0.36 Low 97 High 97 High
smallinvDAXr5b050-055 0.10 Low 97 High 97 High
smallinvDAXr5b100-110 0.04 Low 97 High 97 High
smallinvDAXr5b150-165 0.03 Low 97 High 97 High
smallinvDAXr5b200-220 0.01 Low 97 High 97 High
squfl010-025 51 High 96 High 3.8 Low
squfl010-040 43 Low 98 High 2.4 Low
squfl010-080 49 Low 99 High 1.2 Low
squfl015-060 58 High 98 High 1.6 Low
squfl015-080 57 High 99 High 1.2 Low
squfl020-040 53 High 98 High 2.4 Low
squfl020-050 57 High 98 High 2.0 Low
squfl020-150 59 High 99 High 0.7 Low
squfl025-025 60 High 96 High 3.8 Low
squfl025-030 60 High 97 High 3.2 Low
squfl025-040 61 High 98 High 2.4 Low
squfl030-100 66 High 99 High 1.0 Low
squfl030-150 63 High 99 High 0.7 Low
squfl040-080 65 High 99 High 1.2 Low
sssd08-04 62 High 6.7 Low 73 High
sssd12-05 61 High 5.3 Low 79 High
sssd15-04 62 High 4.5 Low 82 High



1 3

A review and comparison of solvers for convex MINLP  

Instance name Relaxation Nonlinearity Discreteness

Gap (%) Cat. Measure (%) Cat. Measure (%) Cat.

sssd15-06 65 High 4.5 Low 82 High
sssd15-08 63 High 4.5 Low 82 High
sssd16-07 63 High 4.3 Low 83 High
sssd18-06 63 High 4.0 Low 84 High
sssd18-08 67 High 4.0 Low 84 High
sssd20-04 63 High 3.7 Low 85 High
sssd20-08 62 High 3.7 Low 85 High
sssd22-08 62 High 3.4 Low 86 High
sssd25-04 64 High 3.1 Low 88 High
sssd25-08 61 High 3.1 Low 88 High
st_e14 15 Low 64 High 36 Low
st_miqp1 15 Low 100 High 100 High
st_miqp2 382 High 50 High 100 High
st_miqp3 0.00 Low 50 High 100 High
st_miqp4 0.05 Low 50 High 50 High
st_miqp5 0.00 Low 29 Low 29 Low
st_test1 3 ⋅ 10

6 High 80 High 100 High
st_test2 9.5 Low 83 High 100 High
st_test3 24 Low 38 Low 100 High
st_test4 11 Low 33 Low 100 High
st_test5 104 High 70 High 100 High
st_test6 30 Low 100 High 100 High
st_test8 0.00 Low 100 High 100 High
st_testgr1 0.11 Low 100 High 100 High
st_testgr3 0.63 Low 100 High 100 High
st_testph4 3.1 Low 100 High 100 High
stockcycle 1.7 Low 10 Low 90 High
syn05h 0.03 Low 21 Low 12 Low
syn05m 37 Low 15 Low 25 Low
syn05m02h 0.02 Low 17 Low 19 Low
syn05m02m 19 Low 10 Low 33 Low
syn05m03h 0.02 Low 17 Low 19 Low
syn05m03m 20 Low 10 Low 33 Low
syn05m04h 0.01 Low 17 Low 19 Low
syn05m04m 20 Low 10 Low 33 Low
syn10h 0.03 Low 23 Low 13 Low
syn10m 58 High 17 Low 29 Low
syn10m02h 0.08 Low 19 Low 21 Low
syn10m02m 104 High 11 Low 36 Low
syn10m03h 0.05 Low 19 Low 21 Low
syn10m03m 103 High 11 Low 36 Low
syn10m04h 0.04 Low 19 Low 21 Low
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Instance name Relaxation Nonlinearity Discreteness

Gap (%) Cat. Measure (%) Cat. Measure (%) Cat.

syn10m04m 103 High 11 Low 36 Low
syn15h 0.12 Low 26 Low 12 Low
syn15m 97 High 20 Low 27 Low
syn15m02h 0.10 Low 21 Low 20 Low
syn15m02m 66 High 13 Low 35 Low
syn15m03h 0.07 Low 21 Low 20 Low
syn15m03m 74 High 13 Low 35 Low
syn15m04h 0.06 Low 21 Low 20 Low
syn15m04m 91 High 13 Low 35 Low
syn20h 0.32 Low 26 Low 13 Low
syn20m 221 High 22 Low 31 Low
syn20m02h 0.30 Low 21 Low 21 Low
syn20m02m 179 High 13 Low 38 Low
syn20m03h 0.27 Low 21 Low 21 Low
syn20m03m 178 High 13 Low 38 Low
syn20m04h 0.20 Low 21 Low 21 Low
syn20m04m 179 High 13 Low 38 Low
syn30h 6.1 Low 25 Low 13 Low
syn30m 932 High 20 Low 30 Low
syn30m02h 2.9 Low 20 Low 21 Low
syn30m02m 677 High 13 Low 38 Low
syn30m03h 2.0 Low 20 Low 21 Low
syn30m03m 593 High 13 Low 38 Low
syn30m04h 1.6 Low 20 Low 21 Low
syn30m04m 613 High 13 Low 38 Low
syn40h 17 Low 26 Low 13 Low
syn40m 2608 High 22 Low 31 Low
syn40m02h 2.4 Low 21 Low 21 Low
syn40m02m 1072 High 13 Low 38 Low
syn40m03h 5.6 Low 21 Low 21 Low
syn40m03m 1467 High 13 Low 38 Low
syn40m04h 2.0 Low 21 Low 21 Low
syn40m04m 917 High 13 Low 38 Low
synthes1 87 High 33 Low 50 High
synthes2 101 High 36 Low 45 Low
synthes3 78 High 35 Low 47 Low
tls12 98 High 19 Low 82 High
tls2 86 High 16 Low 89 High
tls4 79 High 19 Low 85 High
tls5 89 High 19 Low 84 High
tls6 91 High 20 Low 83 High
tls7 96 High 16 Low 86 High
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Instance name Relaxation Nonlinearity Discreteness

Gap (%) Cat. Measure (%) Cat. Measure (%) Cat.

unitcommit1 1.6 Low 25 Low 75 High
watercontamination0202 52 High 3.8 Low 0.0 Low
watercontamination0202r 100 High 48 Low 3.6 Low
watercontamination0303 64 High 4.2 Low 0.0 Low
watercontamination0303r 100 High 48 Low 3.6 Low

  

Fig. 13  As can be seen from these scatter plots, there is little to no correlation between the three catego-
ries integer relaxation gap, nonlinearity and discrete density. Note that some outliers are missing
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Appendix B

The options provided to the solvers (and subsolvers) in the benchmark are listed 
below. All other settings are the default values as provided by the individual solvers. 
Note that we have not tried to fine-tune any of the solvers; however, if there is a con-
vex strategy, or recommended convex parameters we have used those. We have also 
modified limits and other parameters when it is apparent that implementation issues 
are the cause of, e.g., premature termination of a solver on some problem instances 
or numerical instability. For example, without adding the CONOPT option specified 
below, DICOPT and SBB fails to solve all the smallinv-instances in MINLPLib. 
Therefore, we believe that it is motivated to use these, since this problem occurs in 
the subsolver. 

Name Value Description

General GAMS
MIP CPLEX Uses CPLEX as MIP solver
Threads 8 Max amount of threads
optCR 0.001 Relative termination tolerance
optCA 0 Absolute termination tolerance
nodLim 10

8 To avoid premature termination
domLim 10

8 To avoid premature termination
iterLim 10

8 To avoid premature termination
resLim 900 Time limit
AlphaECP
ECPmaster 1 Activates convex strategy
TOLepsg 10

−6 Constraint tolerance
AOA
IsConvex 1 Activates convex strategy
IterationMax 10

7 Maximal number of iterations
RelativeOptimalityTolerance 0.1 Relative termination tolerance (in %)
TimeLimit 900 Time limit
BONMIN
bonmin.algorithm B-OA Selects the main algorithm

B-HYB
B-BB

milp_solver CPLEX uses CPLEX as MILP solver
bonmin.time_limit 900 Sets the time limit
Couenne
lp_solver Clp Uses Clp as LP solver (as recommended in 

the manual)
DICOPT
convex 1 Activates convex strategy
stop 1 Convex stopping criterion
maxcycles 10

8 iteration limit
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Name Value Description

infeasder 1 Add cutting planes from infeasible NLP 
(convex recommendation)

nlpoptfile 1 To use the CONOPT options below
Juniper
fp_cpx Use CPLEX for the feasibility pump
processors 8 Max number of threads
mip_gap 0.001 Relative termination tolerance
time-limit 900 Time limit
LINDO
USEGOP 0 Deactivates global strategy
SPLEX_ITRLMT − 1 Simplex iteration limit
MIP_ITRLIM − 1 MILP iteration limit

The iteration limits are set as infinite to avoid 
premature termination

Minotaur
lp_engine OsiCpx Use CPLEX as MIP solver
obj_gap_percent 0.1 Relative termination tolerance (in %)
bnb_time_limit 900 Time limit
threads 8 Max amount of threads (does not seem to 

have any effect as it only uses one thread)
Muriqui
MRQ_LP_NLP_BB_OA_BASED_ALG Use LP/NLP based algorithm
in_assume_convexity 1 Use convex strategy
in_absolute_convergence_tol 0 Absolute termination tolerance
in_relative_convergence_tol 0.001 Relative termination tolerance
in_absolute_feasibility_tol 10

−6 Constraint tolerance
in_integer_tol 10

−5 Integer tolerance
in_max_time 900 Time limit
in_milp_solver MRQ_CPLEX Use CPLEX as MIP solver
in_nlp_solver MRQ_IPOPT Use IPOPT as NLP solver
in_number_of_threads 8 Max amount of threads
Pavito
mip_solver CplexSolver Use CPLEX as MILP solver; with one thread 

since multiple threads are not supported 
with callbacks

cont_solver IpoptSolver Use IPOPT as NLP solver
mip_solver_drives True Let MILP solver manage tree
rel_gap 0.001 Relative termination tolerance
timeout 900 Time limit
SBB
memnodes 5 × 10

7 To avoid premature termination, but not too 
large, since memory is preallocated

rootsolver CONOPT.1 To use the CONOPT options below
SCIP
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Name Value Description

constraints/nonlinear/assumeconvex True Activates convex strategy
SHOT
Dual.MIP.NumberOfThreads 8 Max number of threads
Dual.MIP.Solver 0 Use CPLEX as MIP solver
Primal.FixedInteger.Solver 2 To use GAMS NLP solvers
Subsolver.GAMS.NLP.Solver CONOPT Use CONOPT as GAMS NLP solver
Termination.ObjectiveGap.Absolute 0 Absolute termination tolerance
Termination.ObjectiveGap.Relative 0.001 Relative termination tolerance
Termination.TimeLimit 900 Time limit
CONOPT (GAMS)
RTMAXV 10

30 To avoid problems with unbounded variables 
in DICOPT and SBB
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