
Solving Convex MINLP
Problems with AIMMS

By Marcel Hunting
marcel.hunting@aimms.com

August 2012

This document describes the Quesada and Grossman algorithm that is implemented in AIMMS to solve
convex MINLP problems. We benchmark this algorithm against AOA which implements the classic outer
approximation algorithm.

1 Introduction

Convex Mixed Integer Nonlinear Programming (MINLP) problems are MINLP minimization problems in which
the objective function and all constraint functions are convex. We assume that the feasible region is convex if
the integrality condition is relaxed. Convex MINLP problems can be solved more effi ciently than non-convex
MINLP problems.

The outer approximation algorithm was introduced by Duran and Grossmann in 1986 [8] to solve convex
MINLP problems. The algorithm solves an alternating sequence of nonlinear (NLP) problems and mixed-
integer linear (MIP) problems. It was shown that the algorithm fi nds a global optimum solution in a fi nite
number of steps. Later the outer approximation algorithm was modifi ed by Viswanathan and Grossmann [14]
to also handle non-convex MINLP problems but in that case the algorithm cannot guarantee to fi nd a global
optimal.

The outer approximation algorithm of Duran and Grossmann was implemented in AIMMS [2] as the AIMMS
Outer Approximation (AOA) algorithm. The fi rst version of AOA was introduced in AIMMS 3.3. After the
introduction of the GMP library in AIMMS 3.5, the AOA algorithm was rewritten using the GMP functionality;
this GMP version of AOA was released in AIMMS 3.6. The GMP version of AOA is described in [10]. In the
remainder of this paper we let AOA refer to the GMP version.

AOA by default assumes that the MINLP problem is non-convex and uses an iteration limit as stopping
criterion. For AOA the user can fl ag that the problem is convex in which case AOA will terminate if the
objective of the MIP problem becomes larger than the objective of the NLP problem (in case of
minimization).

Quesada and Grossmann [12] noticed that the classic outer approximation algorithm often spends a large
amount of time in solving the MIP problems in which a signifi cant amount of rework is done. They proposed
an algorithm (sometimes called the LP/NLP-Based Branch-and-Bound algorithm) in which only one MIP
problem is solved. The Quesada-Grossmann algorithm was implemented in AIMMS 3.9; we use the name
COA to refer to the AIMMS implementation. (The “C” in COA stands for “callback”.) Both AOA and COA
are “white box” algorithms that allow modifi cations of the algorithm by the user.

Other solvers available in AIMMS for solving MINLP problems are BARON [13] and KNITRO [5].

We start with a brief description of COA. Next we show how COA and AOA can be used to solve convex
MINLP problems. Finally we present results of AOA and COA on problems that are publicly available and
often used for benchmarking MINLP solvers.

www.aimms.com | support@aimms.com

2 The COA Algorithm

The main advantage of COA over AOA is that the need of restarting the branch-and-bound tree search is
avoided and only a single branch-and-bound tree is required. For a technical review of the Quesada and
Grossmann algorithm we refer to [1]. Here we limit ourselves to describing the algorithm as implemented in
COA in words:

1. Solve the MINLP problem as a NLP with all the integer variables relaxed as continuous variables
between their bounds.

2. Create the master MIP problem by removing all nonlinear constraints. Construct linearizations around
the optimal solution of the NLP (solved in step 1) and add the resulting linear constraints to the master
MIP problem.

3. Solve the master MIP problem using a branch-and-bound solver.

4. Whenever the branch-and-bound solver fi nds a new incumbent solution do:

a. Solve the NLP problem by fi xing the integer variables to the values in the incumbent solution.
b. Add linearizations around the optimal NLP solution as lazy constraints to the master MIP
 problem.
c. Continue branch-and-bound enumeration.

5. Terminate MIP solver if the optimality gap is suffi ciently small.

Linearizations are linear outer approximations of the feasible set of the MINLP problem. They are
constructed by using the gradient of each nonlinear function in the NLP problem for a certain (optimal)
solution to the NLP problem.

In the latest version of COA, which is available in AIMMS 3.13, step 4 is implemented using the lazy
constraint callback functionality of a MIP solver. Currently, CPLEX and Gurobi are the only MIP solvers
available in AIMMS that support the lazy constraint callback.

Lazy constraints are constraints that represent one part of the model; without them the model would be
incomplete. In our case the set of constraints representing a linearization of the nonlinear constraints form
the lazy constraints. There are infi nitely many of those constraints and therefore it is impossible to add them
beforehand to the master MIP problem.

The lazy constraint callback used for step 4 is called whenever the MIP solver fi nds an integer feasible
solution. The callback then either accepts the solution as a solution of the original MINLP problem, or
creates one or more lazy constraints (i.e., linearizations) that are violated by the solution.

www.aimms.com | support@aimms.com

The previous version of COA, as used in AIMMS 3.9 – 3.12, did not use the lazy constraint callback because it
was not available in CPLEX and Gurobi at that time. Instead it used four callbacks, namely the incumbent, cut,
heuristic and branch callback functions of CPLEX; Gurobi could not be used because it did not support all of
these four allback functions. The new implementation has several advantages:

• A cleaner and easier implementation; using less “tricks.”

• It can also be used for problems with general integer variables.

• It can be used by CPLEX and Gurobi.

• Improved performance.

The old implementation could only be used for problems with binary variables because the branch callback
does not allow adding new variables to the existing problem which would be needed when solving a
problem with general integer variables.

3 Using AOA and COA

AOA and COA are not solvers but algorithms that are programmed in the AIMMS language using GMP
functions. To use one of the algorithms you fi rst have to install the system module ‘GMPOuterApproximation’.
The AOA algorithm is implemented in the ‘AOA Basic Algorithm’ section of this module and the COA
algorithm in the ‘AOA Convex Algorithm’ section.

Next you have to create an element parameter in your AIMMS project, say, myGMP with range
‘AllGeneratedMathematicalPrograms’. To solve a mathematical program myMP that models a convex
MINLP problem with AOA you should then call:

myGMP := GMP::Instance::Generate(myMP) ;
GMPOuterApprox::IsConvex := 1;
GMPOuterApprox::DoOuterApproximation(myGMP);

where ‘GMPOuterApprox’ is the prefi x of the ‘GMPOuterApproximation’ module. Note that the user has to
tell AIMMS that the problem is convex; AIMMS cannot detect whether a problem is convex. To use COA you
should call:

myGMP := GMP::Instance::Generate(myMP) ;
GMPOuterApprox:: DoConvexOuterApproximation(myGMP);

From AIMMS 3.13 onwards COA by default calls the nonlinear presolver of AIMMS [9]. The presolver can
reduce the size of a problem and tighten the variable bounds which likely improve the performance of COA.
Furthermore, the presolver can often quickly detect inconsistencies in an infeasible problem. Note that the
presolver cannot detect inconsistencies for all infeasible problems.

www.aimms.com | support@aimms.com

Both AOA and COA can print out a status fi le that displays progress information, e.g., the objective value, as
the algorithm solves the MINLP problem. To print out the status fi le you should add the following statement:

GMPOuterApprox::CreateStatusFile := 1;

The status fi le will be printed as the fi le ‘gmp_oa.put’ in the ‘log’ subdirectory. The status fi le is especially
useful in case AOA or COA seems to experience diffi culties when solving your problem.

Figure 1 shows an example of the status fi le output by COA. A ‘*’ in front of a line indicates that a new best
integer solution for the MINLP problem has been found. In this example the algorithm fi nds its fi rst integer
solution with objective value 871267.5847 at the root node of the branch-and-bound tree, a better one with
objective value 797830.1734 at node 30 and continuous until it fi nds the optimal solution with objective value
769440.4204 at node 1251. Thereafter, the algorithm continuous to proof that the fi nal solution is optimal.

Figure 1. Example of COA status fi le output (minimization problem)

www.aimms.com | support@aimms.com

4 Computational Study

To compare the performance of COA with AOA we used test instances from several libraries that are
publicly available: the GAMS MINLPLib World [4], the MacMINLP collection [11], the CMU-IBM Cyber-
Infrastructure for MINLP collaborative site [6], and the CMU-IBM Open source MINLP Project [7]. A large
selection of these instances was used to benchmark other MINLP solvers, e.g., BONMIN [3] and FilMINT [1],
but not the instances adata3 and M_SPO_RL from [6]. All these test instances were written for the modeling
languages AMPL or GAMS and converted to AIMMS models.

The machines used in the test is a Dell Precision T1500 with an Intel(R) Core(TM) i7 2.80GHz CPU, 12
gigabytes of RAM and running Windows 7. The MIP solver used was CPLEX version 12.4 and the NLP
solver was CONOPT version 3.14V.

We used a thread limit of one for CPLEX although the machine we used contains 4 cores. The reason for
this is that the results with COA become non-deterministic if callback procedures are installed (as in COA)
because then CPLEX might use a different solution path (with a different level of performance) if the same
problem is solved again. We used a time limit of 1 hour. We only measure the time used by AOA and COA,
excluding the generation time by AIMMS.

Table 1 shows the running times of AOA, COA in AIMMS 3.12 (using incumbent, cut, heuristic and branch
callbacks) and COA in AIMMS 3.13 (using lazy constraint callback). The problems in table 1 contain no
general integer variables. The best running time for each problem is given in bold. The results of table 1
show that COA 3.13 dominates COA 3.12; the few problems for which COA 3.12 is faster the difference in
running time is small (except for model fo9 which was solved after 5137 seconds by COA 3.13) but for
several problem classes (RSyn, SLay and Water) COA 3.13 clearly performs better than COA 3.12.

For the problem classes Batch, CLay, FLay and SLay, and the problem trimloss4, COA performs better than
AOA. For the other problem classes there is no clear winner. AOA and COA 3.13 perform much better than
COA 3.12 on the Water problems. This is partially caused by the preprocessing step done by AOA and COA
3.13, and which was not implemented for COA 3.12. Table 2 shows the results of AOA and COA 3.13 on the
Water problems if preprocessing is switched off. For all the other problems preprocessing did not have a
signifi cant infl uence on the running time.

www.aimms.com | support@aimms.com

Table 1. Running times (in seconds) for problems with binary variables.

www.aimms.com | support@aimms.com

Table 3 shows results for problems with general integer variables using AOA and COA 3.13. As mentioned
before, these kinds of problems cannot be solved using COA 3.12.

5 Conclusions

AIMMS implements two versions of the outer approximation algorithm, namely the classic version by
Duran and Grossmann (AOA) and the one-MIP-tree-search version by Quesada and Grossmann (COA).
Computational experiments show that overall COA outperforms AOA.

References

[[1] Abhishek, K., S. Leyffer, J. Linderoth, FilMINT: And Outer Approximation-Based Solver for Convex Mixed-Integer
Nonlinear Programs, INFORMS Jounrnal on Computing 22(4) (2010), pp. 555-567.

[2] Bisschop, J., M. Roelofs, AIMMS Language Reference, Version 3.12, Paragon Decision Technology, Haarlem, 2011.

[3] Bonami, P., A. Wächter, L.T. Biegler, A.R. Conn, G. Cornuéjols, I.E. Grossmann, C.D. Laird, J. Lee, A. Lodi, F. Margot
and N. Sawaya. An algorithmic framework for convex mixed integer nonlinear programs. Discrete Optimization 5 (2008),
pp. 186-204.

[4] Bussieck, M.R., A. S. Drud, and A. Meeraus, MINLPLib – a collection of test models for mixed-integer nonlinear
programming, INFORMS Journal on Computing, 15 (2003). [Internet: http://www.gamsworld.org/minlp/index.htm].

Table 2. Effect of preprocessing on running times (in seconds) for Water problems.

Table 3. Running times (in seconds) for problems with general integer variables.

www.aimms.com | support@aimms.com

[5] Byrd, R.H., J. Nocedal, R.A. Waltz, KNITRO: An Integrated Package for Nonlinear Optimization, in: Large-Scale
Nonlinear Optimization, G. di Pillo and M. Roma (eds), Springer-Verlag, 2006, pp. 35-59.

[6] CMU-IBM Cyber-Infrastructure for MINLP collaborative site. [Internet: http://www.minlp.org/].

[7] CMU-IBM Open source MINLP Project. [Internet: http://egon.cheme.cmu.edu/ibm/page.htm].

[8] Duran, M.A., I.E. Grossmann, An outer-approximation algorithm for a class of mixed-integer nonlinear programs,
Mathematical Programming 36 (1986), pp. 307-339.

[9] Hunting, M., A nonlinear presolve algorithm in AIMMS, An AIMMS white paper, Paragon Decision Technology BV, 2011.

[10] Hunting, M., The AIMMS Outer Approximation Algorithm for MINLP (using GMP functionality), An AIMMS white
paper, Paragon Decision Technology BV, 2011.

[11] Leyffer, S., MacMINLP: Test problems for mixed integer nonlinear programming, 2003. [Internet: http://www.mcs.anl.
gov/_leyffer/macminlp].

[12] Quesada, I., I.E. Grossmann, An LP/NLP Based Branch and Bound Algorithm for Convex MINLP Optimization
Problems, Computers and Chemical Engineering 16 (1992), pp. 937-947.

[13] Tawarmalani, M., N.V. Sahinidis, Global optimization of mixed-integer nonlinear programs: A theoretical and
computational study, Mathematical Programming 99(3) (2004), pp. 563-591.

[14] Viswanathan, J., I.E. Grossmann, A combined penalty function and outerapproximation method for MINLP
optimization, Computers and Chemical Engineering 14 (1990), pp. 769-778.

www.aimms.com | support@aimms.com

